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Abstract: This study presents an integrated computational framework for accurate rock discontinuity characterization in complex
geological environments, addressing the limitations of traditional field measurements and existing automated approaches through the
synergistic combination of UAV-based remote sensing and advanced machine learning techniques. The methodology establishes a
three-stage analytical pipeline beginning with an optimized Random Forest algorithm for robust initial classification of discontinuity
features in 3D point cloud data, followed by Mean Shift clustering to systematically group discontinuities by principal orientations, and
concluding with DBSCAN-based refinement for precise boundary delineation. Field validation demonstrates the framework's
effectiveness in overcoming environmental noise and surface irregularity challenges, with the Mean Shift clustering component
particularly excelling in maintaining geometric fidelity for complex curved or rough discontinuity surfaces. The approach shows
consistent performance advantages over conventional methods in both detection accuracy and computational stability, offering practical
improvements for geological surveys by enhancing measurement reliability while reducing field workload, with broad applications in
slope stability assessment, underground excavation design, and rock mass quality evaluation.
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1. Introduction

Geological interfaces, or discontinuities, within rock masses
result from various geological processes and are commonly
found in rock formations (Wittke, 1990). These
discontinuities preserve the mechanical properties of specific
areas over long geological periods, encapsulating information
about Earth's geological activities throughout its extensive
history (Gong et al., 2021). Investigating the parameters of
these discontinuities is essential for a comprehensive
assessment and prediction of the stability, permeability, and
mechanical properties of geological entities (Liang ef al.,
2023). A widely accepted approach is to develop
discontinuity characterization models based on parameters
derived from exposed rock surfaces, which can then be
extended to the interior of rock masses (Gong ef al., 2019,
Jiang ef al., 2020).

In practical applications, direct manual measurements of
exposed discontinuities, conducted through physical contact,
can yield reliable results (Priest, 1993). However, this
approach is limited by safety concerns, inefficiency, and
potential biases, making it impractical in inaccessible areas or
regions with complex terrain, such as steep slopes (Kelam,
2022). The rapid development of remote sensing and
computational technologies has facilitated the digitization of
discontinuity measurements (Wasowski and Bovenga, 2022).
Early studies primarily focused on acquiring discontinuity
data by photographing exposed surfaces (Lane et al., 2000).
Later research shifted towards using point cloud data for
discontinuity identification, leveraging three-dimensional
models of rock faces generated by remote sensing techniques
like LiDAR and photogrammetry (Lato et al., 2009). Notably,
image-based methods continue to be effective for capturing
discontinuities orthogonal to rock surfaces (Azizi and
Moomivand, 2021). In recent years, several studies have

proposed various point cloud-based methods for identifying
discontinuities (Gigli and Casagli, 2011). Undoubtedly, these
methods have significantly advanced the digitization of
discontinuity measurements. Nevertheless, due to the inherent
complexity of natural environments, ongoing challenges in
both data acquisition and discontinuity identification
techniques remain, necessitating further resolution.

Data acquisition in complex environments poses significant
challenges. Terrestrial laser scanning (TLS) is commonly
employed by geoscientists and engineers for on-site data
collection; however, its limited flexibility becomes
particularly problematic in dense forests and rugged terrains
(Singh et al., 2021a). To mitigate the impact of vegetation on
scanner mobility, Singh ef al. (2021) utilized handheld mobile
laser scanning (H-MLS) for slope data acquisition. While
H-MLS improves adaptability in complex settings, it still
cannot reach areas beyond human access. Advances in optical
sensors and manufacturing have resulted in lighter laser
scanners. Mounting compact laser scanners on unmanned
aerial vehicles (UAVs) enhances mobility and enables better
adaptation to the constraints of complex terrain (Arslan
Kelam et al., 2024). Compared to TLS and H-MLS,
UAV-based mobile laser scanning offers distinct advantages
in both flexibility and data acquisition efficiency.

The presence of various surface features significantly impacts
the performance of discontinuity identification algorithms.
Previous studies have employed coplanarity detection
(Riquelme et al., 2015), region growing (Wang et al., 2017),
filtering algorithms (Singh et al., 2021b), fast Fourier
transforms (Singh et al., 2022), and other methods to extract
discontinuity point sets from rock point clouds. These
approaches exhibit effective noise resistance when processing
simple, small-scale non-discontinuity data. However, when
rock slopes are subjected to complex interferences—such as
irregular discontinuities, multi-scale debris, slope shrubs, and
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gravelly soil layers—point cloud processing often requires
considerable manual effort (Menegoni et al., 2019).
Fortunately, advances in computational power and the rapid
development of machine learning technologies have
introduced new tools for rock discontinuity identification. In
recent years, researchers have begun exploring machine
learning (ML) applications in this field (Yunfeng et al., 2022),
utilizing artificial neural networks, gradient boosting trees,
and similar methods for intelligent identification of
discontinuities from 3D point clouds. Nevertheless, like
earlier non-ML approaches, existing studies still fail to
sufficiently account for the impact of complex environments
on identification performance.

Determining the dominant orientations (main directions) of
discontinuities presents significant challenges.
Semi-automatic methods, which combine algorithmic support
with manual expertise, are commonly used to identify the
number of principal orientations. However, these methods
heavily rely on the operator's expertise and experience
(Riquelme er al., 2014). To achieve more objective
identification of main directions, advanced algorithms, such
as the cluster validity index (CVI) and clustering by fast
search and find of density peaks (CFSFDP), have been
applied to automatically determine the number of main
directions (Chen et al., 2016). However, CVI requires
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multiple clustering iterations to evaluate the optimal number
of clusters, leading to increased time costs. CFSFDP requires
precomputing pairwise similarities between points, resulting
in prohibitive computational and storage costs for large-scale
data applications (Rodriguez and Laio, 2014). Therefore,
there is a pressing need for an improved automated
discontinuity extraction method to address the time and
memory constraints associated with large point cloud datasets
in practical applications.

Current discontinuity detection methods are often limited by
the complexity of natural rock surfaces, affecting their
practical applicability. This study proposes a hierarchical
classification approach that combines machine learning with
the mean shift clustering algorithm to accurately identify
discontinuities under complex conditions. The method
employs machine learning-based point cloud preprocessing to
reduce environmental interference and utilizes the mean shift
algorithm for orientation clustering. This flexible framework
allows algorithm customization at different processing stages,
significantly  improving robustness for engineering
applications while maintaining computational efficiency. The
results demonstrate that this technique exhibits outstanding
practical value for discontinuity identification in challenging
field conditions.
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Figure 1: Flowchart of the proposed approach

2. Methodology

This study proposes a phased methodological framework
(Figure 1) to address the multi-source interference affecting
automatic identification of rock mass discontinuities in
complex terrain environments. The developed methodology
consists of five principal components:

Stepl: The RGB images of the slope acquired via an
unmanned aerial vehicle (UAV) platform were processed
using the Structure from Motion (SfM) technique (Westoby et
al., 2012). This photogrammetric approach reconstructs 3D
models by extracting feature points from overlapping images
captured at multiple viewing angles. Following point cloud
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generation, a preliminary preprocessing step  was
implemented to establish a structured dataset containing
spatial coordinates (X, Y, Z) and spectral attributes (R, G, B).

Step2: The k-d tree algorithm was integrated with KNN and
PCA to compute local geometric features and normal vectors
for each point cloud element. The output includes: a feature
vector (C, P, S, V, R, G', B") representing local point
characteristics, and normal vectors (Nx, Ny, N,) calculated
from each point's spatial relationship with its neighbors.

Step3: A Bayesian optimization-based parameter space
search strategy was implemented on the point feature dataset
generated in Step 2 to systematically determine the optimal
hyperparameter configuration for the Random Forest (RF)
classifier. Subsequently, a high-performance RF model was
trained using the complete sample set with optimized
parameters, achieving holistic classification of the point cloud
data. Throughout this process, geometric coordinates (X, Y, Z)
and localized normal vectors (Nx, Ny, N,) were synchronously
extracted for spatial points identified as discontinuity
surfaces.

Step4: All normal vectors of the discontinuity points acquired
in Step 3 were assigned to their corresponding primary
discontinuity sets using the mean shift clustering algorithm
based on orientation similarity. Subsequently, the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm was applied to analyze spatial
coordinates within each discontinuity set, enabling the
isolation of individual discontinuity planes.

Step5: The Random Sample Consensus (RANSAC)
algorithm was employed to perform planar fitting on each
clustered subset obtained from the preceding step, followed
by quantitative determination of the dip direction and dip
angle parameters of structural discontinuities through
three-dimensional geometric analysis.

2.1 Feature Extraction
2.1.1 Normal vectors

The point normal vector, a critical local geometric descriptor
of 3D point clouds, is defined as the unit orthogonal vector to
the least-squares fitted local plane. To address large-scale
point cloud processing, the algorithm employs k-d tree spatial
partitioning to optimize KNN search efficiency. Principal
Component Analysis on the neighborhood points constructs a
3D covariance matrix, whose eigenvalues A1>A>>As>0 and
orthonormal eigenvectors {vi, vz, va} are computed. The unit
normal vector n = (ny, ny, n,) is derived from eigenvector vs
corresponding to the minimal eigenvalue As, with directional
consistency enforced through global orientation constraints.

2.1.2 Point Features

In 3D point cloud datasets, the local geometric features of
discrete points characterize the spatial relationships with their
neighboring points. These features essentially constitute a
multidimensional attribute collection of the point cloud,
enabling attribute-difference-based point cloud classification
through the provision of distinguishable feature descriptors

for machine learning models.

Geometric Features: In point cloud classification tasks,
geometric features serve as critical classification criteria that
characterize the morphological attributes of local point
clusters. Building upon the seminal work of (Weinmann et al.,
2013) on geometric feature redundancy analysis, this study
adopts curvature (C), planarity (P), and sphericity (S) as
discriminative geometric descriptors. The mathematical
formulations of these parameters are expressed as follows:
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where A1, A, and A3 are the eigenvalues of the covariance
matrix of the coordinate set of the query point and its
neighboring points, with Ai>A>As>0.

Slope: Based on the feature quantification framework
established by Weinmann ef al. (Weinmann et al., 2013), this
study designates verticality (V) as a pivotal descriptor for
characterizing slope morphology, which holds second-tier
significance in feature contribution evaluation. Recent
research by Beni et al. (Beni et al., 2023) has systematically
substantiated the discriminative efficacy of this feature metric
through multi-source point cloud data integration, particularly
evident in its sensitivity to structural plane classification
within complex terrain conditions. The mathematical
formulation is expressed as:

V=1-n, (4)

where n, denotes the third component of the point normal
vector n.

Color: Within 3D point cloud classification methodological
frameworks, spectral attributes have been established as
critical discriminative parameters. Chroma is a simple feature
that remains constant regardless of variations in the emitted
light intensities (Cernadas et al., 2017). The specific
calculation is formulated as follows:

, R
T R+G+B ®)
r_ G
G = R+G+B (6)
,_ B
B = R+G+B )

where R, G, and B denote the chromaticity values of the red,
green, and blue channels, respectively.

2.2 Rock Discontinuity Intelligent Extraction
2.2.1 Random Forest

Random Forest (RF), a machine learning algorithm
constructed by integrating multiple decorrelated decision
trees, demonstrates robust resistance to overfitting in handling
high-dimensional classification tasks (Breiman, 1996). This
study employs the RF algorithm for multi-target classification
of rock slope point clouds. By fusing normal vector verticality,
chromaticity space and local curvature distribution, the
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method achieves effective identification of rock mass
discontinuities. The target categories—vegetation, structural
discontinuities, and unconsolidated deposits—are defined
based on spectral reflectance discrepancies and
three-dimensional spatial topological relationships within the
point cloud data. During node splitting, the algorithm
randomly selects feature subsets and determines optimal
splitting thresholds through the Gini index minimization
criterion. The Gini index is calculated as:

L _ 1wk (le?
Gini(D) =1 k:1(|D|)

“

let D denote the dataset, where Ci represents the subset of
samples belonging to the k-th class, and K indicates the total
number of classes. The Gini index quantifies node impurity,
with lower values corresponding to higher node purity. The
feature achieving maximal purity gain through binary splitting
is identified as the optimal splitting feature.

2.2.2 Bayesian Optimization

Bayesian optimization algorithms are widely employed for
hyperparameter optimization tasks due to their capability to
rapidly identify optimal configurations (Sameen et al., 2020,
Sun et al., 2021). When analytical expressions of objective
functions are unavailable or computationally intractable, these
algorithms construct Gaussian process (GP) surrogate models
to estimate the behavior of the objective function (Bull, 2011,
Gelbart ef al., 2014). The critical hyperparameters governing
random forest (RF) performance comprise: NumTrees
(number of decision trees), MaxNumSplits (maximum
splitting operations per tree), and NumPredictorstoSample
(feature candidates per node split). In this study, these three
hyperparameters are designated as input variables, with
fivefold cross-validation accuracy serving as the output
response. The Bayesian optimization framework is employed
to determine the optimal hyperparameter configuration for the
RF model.

2.2.3 Model Evaluation

To validate the efficacy of the optimized model, we employ
confusion matrix-derived metrics (accuracy, precision, and
recall) to quantitatively assess classification performance.
These metrics are formally defined as:

TP+TN

Acouracy = o ee e ©)
Precision = —— (10)
TP+FP
Recall = —2— (11)
TP+FN

where TP (True Positive) denotes correctly classified positive
instances, FN (False Negative) represents misclassified
positive instances, FP (False Positive) indicates misclassified
negative instances, and TN (True Negative) refers to correctly
classified negative instances. The qualifier "True" signifies
correct classification, "Positive" corresponds to the target
class, "False" indicates misclassification, and "Negative"
refers to non-target classes.

2.3 Discontinuity Segmentation in Point Clouds

2.3.1 Discontinuity Set Identification

The identification of discontinuity sets constitutes a
fundamental procedure for the refined characterization of rock
mass structural planes. The core objective lies in achieving
accurate partitioning of discrete point clouds into
corresponding discontinuity sets based on their spatial
distribution characteristics. This study employs the Mean
Shift clustering algorithm based on density gradient
estimation, which performs cluster analysis through iterative
search for local density maxima within point cloud data. By
defining a dynamic window via kernel functions, the
algorithm progressively updates centroid positions along the
probability density gradient direction until convergence to
stable cluster centers. Compared with conventional clustering
methods, the proposed algorithm exhibits the following
distinctive advantages: (1) It eliminates the need for
predefining cluster quantities and adaptively identifies
structural plane point sets with arbitrary spatial topologies; (2)
Only the bandwidth parameter is required to control clustering
precision, while demonstrating robust anti-interference
capability against measurement noise and outliers.

2.3.2 Recognition of individual discontinuity

To accurately calculate individual discontinuity set
parameters, a secondary clustering process is implemented to
subdivide each discontinuity from the principal orientation
cluster. The DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm is employed for this
hierarchical classification, enabling the identification of
distinct planar features with similar spatial distributions
within the primary cluster. As a robust density-based
clustering algorithm, DBSCAN initiates by randomly
selecting an XYZ coordinate (designated as point p) from the
principal cluster. A predefined radial distance (eps)
establishes a neighborhood around the selected seed point.
When the number of neighboring points within this radius
meets or exceeds a specified minimum threshold (MinPts),
point p is classified as a core point. Conversely, points failing
to satisfy this density criterion are categorized as border
points. All core points and their associated neighboring points
within the eps radius are subsequently grouped into a cohesive
cluster. This iterative process continues until all
density-reachable core points are assigned to corresponding
clusters, while isolated core points form new cluster entities.

2.4 Plane Fitting

The RANSAC method is an iterative algorithm that can
estimate the parameters of a fitted surface model from a
dataset (Raguram et al., 2008, FISCHLER AND, 1981). It is
extensively used for shape detection (Nguyen and Le, 2013,
Xu et al., 2015), including the identification of building
fagades (Adam ef al., 2018, Boulaassal et al., 2007) and roof
(Chen et al., 2014). The computational workflow initiates by
randomly selecting three non-collinear points to establish
parametric plane models through linear equation derivation,
followed by iterative verification of geometric consistency
among neighboring points against predefined spatial tolerance
thresholds. Points satisfying this proximity criterion are
aggregated into an inlier consensus set, while those exceeding
the threshold are classified as statistical outliers. Through
cyclic hypothesis generation and validation, the planar
configuration exhibiting maximum consensus set cardinality
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is retained as the optimal solution. Subsequent removal of
inlier-associated data points triggers search domain
reinitialization, with this iterative process persisting until
exhaustive detection of latent planar surfaces is achieved.
Final surface validation is governed by consensus set
population metrics, systematically discarding plane
hypotheses demonstrating subcritical inlier densities while
preserving geometrically significant surfaces with substantial
consensus point concentrations.

RANSAC implementation yields the plane equation in the
form of (Ax + By + Cz + D = 0), where A, B, and C are the
unit normal vector components of the best-fit plane. The dip
and the dip direction of the planes are found using Eqgs. (12)

and (13).
{ 90 — tan™* (%) A>0
o o 0° A=0and B> 0
Dip direction = 180° A=0and B<0
270 — tan”" (%) A<0
(12)
A>+B*=0

00
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2 2 (13)
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3. Results

This study utilized a DJI Mavic 3E unmanned aerial vehicle
(UAV) equipped with an integrated Real-Time Kinematic
(RTK) positioning system for photogrammetric data
acquisition. To preserve detailed slope characteristics, an
oblique flight path was employed during data collection,
maintaining a constant distance of 10 meters between the
UAV and the target rock slope surface. An image overlap rate
of 80% was configured to ensure sufficient tie points for
subsequent 3D model reconstruction. A representative rock
slope along a highway in Yanbian Korean Autonomous
Prefecture, Jilin Province, China was selected as the case
study (Figure 2), featuring an inclination angle of
approximately 60° with sandstone as the predominant
lithology.

Figure 2: Point clouds of the research case

The field data presented in Figure 3 were classified into two
distinct categories: a discontinuity dataset comprising
113,264 points (marked in yellow) and a non-discontinuity
dataset containing 135,629 points (marked in blue). To
determine the optimal neighborhood size (k) for feature
extraction, we conducted an analysis of the discontinuity
dataset, where the normal vectors of fracture planes were

expected to converge with increasing sampling scale.

Figure 3: Learning samples. The yellow point clouds are the
rock discontinuity sampling points, and the biue point clouds
are the non-discontinuity sampling points

Prior to model training, we implemented class-balanced
sampling by randomly selecting 100,000 data points from
each category, resulting in a balanced dataset comprising
200,000 points in total. The dataset was then partitioned into
training and validation subsets with an 8:2 ratio, where the
training set served for model development and parameter
optimization while the validation set was reserved for
performance evaluation. For hyperparameter tuning, we
employed Bayesian optimization coupled with five-fold
cross-validation, executing 50 optimization iterations with
classification accuracy as the evaluation metric. The optimal
parameter configuration identified through this systematic
process is presented in Table 1.

Table 1: RF hyperparameters obtained via Bayesian

optimization
Hyperparameter Searching space Value
Number of learners [10-500] 375
Maximum number of splits [1-319999] 454891
Number of predictors to sample [1-9] 5

To maximize feature learning from the complete dataset, we
trained the final model using optimized hyperparameters,
successfully classifying all slope point clouds and labeling a
total of 3,291,750 discontinuity points. As illustrated in
Figure 5, the classified discontinuity points are superimposed
on the original point cloud for visual verification. While the
classifier missed some high-roughness discontinuity points,
the overall identification accuracy remains satisfactory.
During the identification process, large rough discontinuities
may appear as fragmented patches while maintaining
structural integrity, whereas smaller rough discontinuities
might be filtered out as scattered points - a reasonable
compromise given that even expert geologists often struggle
to distinguish such features from debris. For the classified
discontinuity point cloud, the Mean Shift (MS) algorithm
automatically identified six principal discontinuity sets,
completing the secondary classification. All discontinuity
points were then grouped according to their principal
orientations. The clustering results are visually presented in
Figure 6 by overlaying directional subsets with the original
point cloud. Finally, DBSCAN segmentation was applied to
each principal orientation set, extracting 313 individual
discontinuities and completing the tertiary classification. This
comprehensive approach ensures complete discontinuity
extraction while maintaining computational efficiency.

Volume 8 Issue 1, 2026
www.bryanhousepub.com

51



Journal of Progress in Civil Engineering

ISSN: 2322-0856

Figure 5: The results of identification and classification of all
discontinuities and non-discontinuities

Figure 6: Discontinuity identification and classification result.
The point clouds shown in each specific color represent the
rock discontinuities identified as belonging to the same set.

4. Discussion

The deployment of unmanned aerial vehicles (UAVs) has
revolutionized rock slope investigations in challenging
environments. Compared to terrestrial laser scanning (TLS)
and handheld mobile laser scanning (H-MLS) systems,
UAV-mounted platforms offer unparalleled flexibility to
navigate along slope profiles, significantly minimizing scan
occlusions while capturing high-fidelity point cloud data.
Although this aerial approach effectively overcomes
environmental constraints during data acquisition, the critical
challenge of accurately identifying and differentiating
discontinuities from other geological features within complex
rock mass formations remains unresolved. While the
technology primarily addresses data collection limitations, it
does not fundamentally solve the core problem of automated
discontinuity recognition in heterogeneous slope conditions.

To effectively identify discontinuities in complex geological
environments, this study proposes a multi-stage hierarchical
processing framework. The methodology is systematically
organized into three progressive phases: initial point cloud
classification, followed by orientation-based clustering, and
concluding with individual discontinuity extraction. This
structured approach integrates the strengths of supervised
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learning for complex feature recognition with the efficiency
of unsupervised techniques for segmentation tasks, ensuring
both comprehensive coverage and high-precision results.

4.1 Performance of the RF Classifier

To evaluate the effectiveness of the model, the optimized
version with tuned hyperparameters was applied to classify
the test dataset. Performance was assessed using confusion
matrix analysis, which yielded an overall classification
accuracy of 89.2% for discontinuity identification (Figure 7).
This result significantly surpasses the minimum practical
threshold of 60—70% accuracy proposed by Weidner and
Walton for engineering geology applications, a benchmark
derived from their comprehensive analysis of 2,560 random
forest classifiers. The achieved performance underscores the
model’s reliability and confirms its suitability for practical use
in rock discontinuity analysis.
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Figure 7: The confusion matrix of test set.
The discontinuity category  demonstrates  superior

performance, with precision and recall reaching 95.7% and
96.1%, respectively. The feature selection strategy prioritizes
planar structural characteristics, such as geometric attributes
and local descriptors, which enhances the ability of the
random forest model to effectively identify discontinuities.
This approach not only improves detection accuracy but also
maintains interpretability for non-specialists. In practice, the
study adopts a balanced approach by incorporating
fundamental features like color and slope, thereby avoiding
unnecessary complexity that could arise from over-optimizing
the classification of secondary geographic elements. The
established performance threshold considers discontinuities
satisfactory when both precision and recall exceed 90%, a
standard well above the minimum acceptable level for
geological applications.

The classification performance varies among
non-discontinuity categories. This inter-class confusion
phenomenon corroborates findings reported by Weidner and
Walton, indicating inherent limitations in distinguishing
between soil and fractured regions using conventional point
cloud features. While advanced analytical methods could
potentially enhance discrimination, such refinements fall

beyond the scope of this study, which primarily focuses on
discontinuity identification. From a practical engineering
perspective, the current classification performance for all
non-discontinuity categories remains operationally viable,
given that the primary objective is accurate discontinuity

detection rather than exhaustive classification of
non-discontinuity features.
The developed classifier may however demonstrate

constrained generalizability—a prevalent issue in geoscience
applications owing to substantial geographical variations in
natural features. While enhancing model generalizability
frequently involves trade-offs with recognition accuracy, our
methodology  emphasizes high-precision identification
tailored for localized engineering applications. Given the
rigorous accuracy requirements for  discontinuity
measurements and the inherently site-specific nature of
construction projects, we intentionally trained the machine
learning model exclusively on data from the study area. This
localized training approach aligns with prevailing best
practices in engineering applications, where models are
customarily developed for specific regional contexts rather
than universal applicability.

4.2 The Effectiveness of the Main Direction Identification

Through visual comparative analysis, the identification results
of rock discontinuity sets in each case demonstrated a high
degree of consistency with the manually measured data.
When identifying rock surfaces with well-developed planar
features, the recognition results exhibited large-scale
continuous clusters of point clouds belonging to a single
category. Taking the J1 discontinuity set in the case as an
example, which represents a near-slope aspect structural plane
with wide distribution and good extensibility, the
identification results accurately reflected the spatial
distribution characteristics of this discontinuity set. For
complex rock mass areas where local planar features change
significantly or multiple structural planes intersect, the
identification results showed that the point clouds
corresponding to different discontinuity sets exhibited a
mutually intersecting and overlapping distribution pattern.
During the research process, the system did not forcibly
merge point clouds from different discontinuity sets in
localized regions. Instead, distinctions were made based on
their actual characteristics, effectively preserving the local
geometric morphology and spatial distribution details of
different rock structural planes. Furthermore, for
discontinuity sets with low distribution density and limited
spatial extent, such as the J3 set, the method also achieved
accurate identification and reasonable classification,
demonstrating the algorithm's capability to handle sparse data.

In the comparative analysis of orientation measurement
results, the largest discrepancy occurred in the J3
discontinuity set, with a maximum dip angle error of 3.74°.
This discrepancy primarily stems from the inherent
complexity of the field data: the discontinuities of the J3 set
are spatially dispersed, and the number of data points is
relatively low, resulting in less pronounced statistical
characteristics of the orientation compared to other sets. This
data sparsity and distribution discreteness increase the
difficulty of accurate identification and orientation
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measurement, which constitutes the main cause of the error.
Nonetheless, the error remains within the acceptable range for
engineering geological applications, and algorithmic
optimizations have further reduced the impact of such errors.

5. Conclusion

This study presents an innovative methodology system for
intelligent identification and characterization of rock
discontinuities, which integrates unmanned aerial vehicle
(UAV) photogrammetry with machine learning technologies.
The method employs a multi-level classification strategy,
combining random forest classification, mean shift clustering,
and DBSCAN segmentation algorithms to construct a
comprehensive automated analysis framework. Initially,
high-resolution 3D point cloud data is acquired via UAV, and
an optimized random forest classifier is utilized to accurately
identify structural planes. Subsequently, mean shift clustering
is applied to intelligently group the orientation characteristics
of the structural planes, followed by the use of the DBSCAN
algorithm to extract individual discontinuities. The entire
workflow adopts a hierarchical and progressive approach,
integrating multi-dimensional features—including geometric,
spectral, and spatial data—which effectively mitigates
common engineering interferences such as complex terrain,
vegetation coverage, and irregular structural planes, thereby
significantly improving analytical accuracy.

The method demonstrates excellent engineering applicability.
Its flexible framework supports parameter adjustment and
functional expansion, while the use of a UAV platform
overcomes the spatial limitations inherent in traditional
surveying equipment. Compared with conventional methods
such as terrestrial laser scanning, this technique offers distinct
advantages in terms of operational efficiency, data coverage,
and safety—making it particularly suitable for hazardous
environments such as high and steep slopes. The technology
enables a fully automated workflow from data acquisition to
analysis, not only enhancing the efficiency and accuracy of
structural plane investigations, but also providing reliable
technical support for the evaluation of rock mass stability and
the prevention of geological hazards. It holds strong potential
to become a vital technical tool in the field of geological
surveying.
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