
 

Journal of Progress in Civil Engineering                                 ISSN: 2322-0856

www.bryanhousepub.orgwww.bryanhousepub.com

  
  
   

 

                          Volume 7 Issue 11, 202Volume 7 Issue 12, 2025Volume 8 Issue 1, 2026 

  
  

  

  
  

  

  
 

  

The Multi-Level Classification Strategy for Rock 

Surface 3D Point Clouds 
  

Zhenmin Chen1, Shengwu Qin1,*, Yong Tao2, Wendi Rao2, Jiawei Qi2, Jiayu Yan1 
 

1State Key Laboratory of Deep Earth Exploration and Imaging, College of Construction Engineering, Jilin University,  

Changchun 130026, Jilin, China 
2Jilin Geological Environment Monitoring Center (Jilin Geological Disaster Emergency Technical Guidance Center),  

Changchun 130021, Jilin, China 

*Correspondence Author, qinsw@jlu.edu.cn 

 

Abstract: This study presents an integrated computational framework for accurate rock discontinuity characterization in complex 

geological environments, addressing the limitations of traditional field measurements and existing automated approaches through the 

synergistic combination of UAV-based remote sensing and advanced machine learning techniques. The methodology establishes a 

three-stage analytical pipeline beginning with an optimized Random Forest algorithm for robust initial classification of discontinuity 

features in 3D point cloud data, followed by Mean Shift clustering to systematically group discontinuities by principal orientations, and 

concluding with DBSCAN-based refinement for precise boundary delineation. Field validation demonstrates the framework's 

effectiveness in overcoming environmental noise and surface irregularity challenges, with the Mean Shift clustering component 

particularly excelling in maintaining geometric fidelity for complex curved or rough discontinuity surfaces. The approach shows 

consistent performance advantages over conventional methods in both detection accuracy and computational stability, offering practical 

improvements for geological surveys by enhancing measurement reliability while reducing field workload, with broad applications in 

slope stability assessment, underground excavation design, and rock mass quality evaluation. 
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1. Introduction 
 

Geological interfaces, or discontinuities, within rock masses 

result from various geological processes and are commonly 

found in rock formations (Wittke, 1990). These 

discontinuities preserve the mechanical properties of specific 

areas over long geological periods, encapsulating information 

about Earth's geological activities throughout its extensive 

history (Gong et al., 2021). Investigating the parameters of 

these discontinuities is essential for a comprehensive 

assessment and prediction of the stability, permeability, and 

mechanical properties of geological entities (Liang et al., 

2023). A widely accepted approach is to develop 

discontinuity characterization models based on parameters 

derived from exposed rock surfaces, which can then be 

extended to the interior of rock masses (Gong et al., 2019, 

Jiang et al., 2020).  

 

In practical applications, direct manual measurements of 

exposed discontinuities, conducted through physical contact, 

can yield reliable results (Priest, 1993). However, this 

approach is limited by safety concerns, inefficiency, and 

potential biases, making it impractical in inaccessible areas or 

regions with complex terrain, such as steep slopes (Kelam, 

2022). The rapid development of remote sensing and 

computational technologies has facilitated the digitization of 

discontinuity measurements (Wasowski and Bovenga, 2022). 

Early studies primarily focused on acquiring discontinuity 

data by photographing exposed surfaces (Lane et al., 2000). 

Later research shifted towards using point cloud data for 

discontinuity identification, leveraging three-dimensional 

models of rock faces generated by remote sensing techniques 

like LiDAR and photogrammetry (Lato et al., 2009). Notably, 

image-based methods continue to be effective for capturing 

discontinuities orthogonal to rock surfaces (Azizi and 

Moomivand, 2021). In recent years, several studies have 

proposed various point cloud-based methods for identifying 

discontinuities (Gigli and Casagli, 2011). Undoubtedly, these 

methods have significantly advanced the digitization of 

discontinuity measurements. Nevertheless, due to the inherent 

complexity of natural environments, ongoing challenges in 

both data acquisition and discontinuity identification 

techniques remain, necessitating further resolution. 

 

Data acquisition in complex environments poses significant 

challenges. Terrestrial laser scanning (TLS) is commonly 

employed by geoscientists and engineers for on-site data 

collection; however, its limited flexibility becomes 

particularly problematic in dense forests and rugged terrains 

(Singh et al., 2021a). To mitigate the impact of vegetation on 

scanner mobility, Singh et al. (2021) utilized handheld mobile 

laser scanning (H-MLS) for slope data acquisition. While 

H-MLS improves adaptability in complex settings, it still 

cannot reach areas beyond human access. Advances in optical 

sensors and manufacturing have resulted in lighter laser 

scanners. Mounting compact laser scanners on unmanned 

aerial vehicles (UAVs) enhances mobility and enables better 

adaptation to the constraints of complex terrain (Arslan 

Kelam et al., 2024). Compared to TLS and H-MLS, 

UAV-based mobile laser scanning offers distinct advantages 

in both flexibility and data acquisition efficiency. 

 

The presence of various surface features significantly impacts 

the performance of discontinuity identification algorithms. 

Previous studies have employed coplanarity detection 

(Riquelme et al., 2015), region growing (Wang et al., 2017), 

filtering algorithms (Singh et al., 2021b), fast Fourier 

transforms (Singh et al., 2022), and other methods to extract 

discontinuity point sets from rock point clouds. These 

approaches exhibit effective noise resistance when processing 

simple, small-scale non-discontinuity data. However, when 

rock slopes are subjected to complex interferences—such as 

irregular discontinuities, multi-scale debris, slope shrubs, and 
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gravelly soil layers—point cloud processing often requires 

considerable manual effort (Menegoni et al., 2019). 

Fortunately, advances in computational power and the rapid 

development of machine learning technologies have 

introduced new tools for rock discontinuity identification. In 

recent years, researchers have begun exploring machine 

learning (ML) applications in this field (Yunfeng et al., 2022), 

utilizing artificial neural networks, gradient boosting trees, 

and similar methods for intelligent identification of 

discontinuities from 3D point clouds. Nevertheless, like 

earlier non-ML approaches, existing studies still fail to 

sufficiently account for the impact of complex environments 

on identification performance. 

 

Determining the dominant orientations (main directions) of 

discontinuities presents significant challenges. 

Semi-automatic methods, which combine algorithmic support 

with manual expertise, are commonly used to identify the 

number of principal orientations. However, these methods 

heavily rely on the operator's expertise and experience 

(Riquelme et al., 2014). To achieve more objective 

identification of main directions, advanced algorithms, such 

as the cluster validity index (CVI) and clustering by fast 

search and find of density peaks (CFSFDP), have been 

applied to automatically determine the number of main 

directions (Chen et al., 2016). However, CVI requires 

multiple clustering iterations to evaluate the optimal number 

of clusters, leading to increased time costs. CFSFDP requires 

precomputing pairwise similarities between points, resulting 

in prohibitive computational and storage costs for large-scale 

data applications (Rodriguez and Laio, 2014). Therefore, 

there is a pressing need for an improved automated 

discontinuity extraction method to address the time and 

memory constraints associated with large point cloud datasets 

in practical applications. 

 

Current discontinuity detection methods are often limited by 

the complexity of natural rock surfaces, affecting their 

practical applicability. This study proposes a hierarchical 

classification approach that combines machine learning with 

the mean shift clustering algorithm to accurately identify 

discontinuities under complex conditions. The method 

employs machine learning-based point cloud preprocessing to 

reduce environmental interference and utilizes the mean shift 

algorithm for orientation clustering. This flexible framework 

allows algorithm customization at different processing stages, 

significantly improving robustness for engineering 

applications while maintaining computational efficiency. The 

results demonstrate that this technique exhibits outstanding 

practical value for discontinuity identification in challenging 

field conditions. 

 

Figure 1: Flowchart of the proposed approach 

2. Methodology 
 

This study proposes a phased methodological framework 

(Figure 1) to address the multi-source interference affecting 

automatic identification of rock mass discontinuities in 

complex terrain environments. The developed methodology 

consists of five principal components: 

 

Step1: The RGB images of the slope acquired via an 

unmanned aerial vehicle (UAV) platform were processed 

using the Structure from Motion (SfM) technique (Westoby et 

al., 2012). This photogrammetric approach reconstructs 3D 

models by extracting feature points from overlapping images 

captured at multiple viewing angles. Following point cloud 
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generation, a preliminary preprocessing step was 

implemented to establish a structured dataset containing 

spatial coordinates (X, Y, Z) and spectral attributes (R, G, B). 

 

Step2: The k-d tree algorithm was integrated with KNN and 

PCA to compute local geometric features and normal vectors 

for each point cloud element. The output includes: a feature 

vector (C, P, S, V, R', G', B') representing local point 

characteristics, and normal vectors (Nx, Ny, Nz) calculated 

from each point's spatial relationship with its neighbors. 

 

Step3: A Bayesian optimization-based parameter space 

search strategy was implemented on the point feature dataset 

generated in Step 2 to systematically determine the optimal 

hyperparameter configuration for the Random Forest (RF) 

classifier. Subsequently, a high-performance RF model was 

trained using the complete sample set with optimized 

parameters, achieving holistic classification of the point cloud 

data. Throughout this process, geometric coordinates (X, Y, Z) 

and localized normal vectors (Nx, Ny, Nz) were synchronously 

extracted for spatial points identified as discontinuity 

surfaces. 

 

Step4: All normal vectors of the discontinuity points acquired 

in Step 3 were assigned to their corresponding primary 

discontinuity sets using the mean shift clustering algorithm 

based on orientation similarity. Subsequently, the 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm was applied to analyze spatial 

coordinates within each discontinuity set, enabling the 

isolation of individual discontinuity planes. 

 

Step5: The Random Sample Consensus (RANSAC) 

algorithm was employed to perform planar fitting on each 

clustered subset obtained from the preceding step, followed 

by quantitative determination of the dip direction and dip 

angle parameters of structural discontinuities through 

three-dimensional geometric analysis. 

 

2.1 Feature Extraction 

 

2.1.1 Normal vectors 

 

The point normal vector, a critical local geometric descriptor 

of 3D point clouds, is defined as the unit orthogonal vector to 

the least-squares fitted local plane. To address large-scale 

point cloud processing, the algorithm employs k-d tree spatial 

partitioning to optimize KNN search efficiency. Principal 

Component Analysis on the neighborhood points constructs a 

3D covariance matrix, whose eigenvalues λ₁≥λ₂≥λ₃≥0 and 

orthonormal eigenvectors {v₁, v₂, v₃} are computed. The unit 

normal vector n = (nx, ny, nz) is derived from eigenvector v₃ 

corresponding to the minimal eigenvalue λ₃, with directional 

consistency enforced through global orientation constraints. 

 

2.1.2 Point Features 

 

In 3D point cloud datasets, the local geometric features of 

discrete points characterize the spatial relationships with their 

neighboring points. These features essentially constitute a 

multidimensional attribute collection of the point cloud, 

enabling attribute-difference-based point cloud classification 

through the provision of distinguishable feature descriptors 

for machine learning models. 

 

Geometric Features: In point cloud classification tasks, 

geometric features serve as critical classification criteria that 

characterize the morphological attributes of local point 

clusters. Building upon the seminal work of (Weinmann et al., 

2013) on geometric feature redundancy analysis, this study 

adopts curvature (C), planarity (P), and sphericity (S) as 

discriminative geometric descriptors. The mathematical 

formulations of these parameters are expressed as follows:  

 𝐶 =
𝜆3

𝜆1+𝜆2+𝜆3
 (1) 

 𝑃 =
𝜆2−𝜆3

𝜆1
 (2) 

 𝑆 =
𝜆3

𝜆1
 (3) 

where λ1, λ2, and λ3 are the eigenvalues of the covariance 

matrix of the coordinate set of the query point and its 

neighboring points, with λ₁≥λ₂≥λ₃≥0. 

 

Slope: Based on the feature quantification framework 

established by Weinmann et al. (Weinmann et al., 2013), this 

study designates verticality (V) as a pivotal descriptor for 

characterizing slope morphology, which holds second-tier 

significance in feature contribution evaluation. Recent 

research by Beni et al. (Beni et al., 2023) has systematically 

substantiated the discriminative efficacy of this feature metric 

through multi-source point cloud data integration, particularly 

evident in its sensitivity to structural plane classification 

within complex terrain conditions. The mathematical 

formulation is expressed as: 

 𝑉 = 1 − 𝑛𝑧 (4) 

where nz denotes the third component of the point normal 

vector n. 

 

Color: Within 3D point cloud classification methodological 

frameworks, spectral attributes have been established as 

critical discriminative parameters. Chroma is a simple feature 

that remains constant regardless of variations in the emitted 

light intensities (Cernadas et al., 2017). The specific 

calculation is formulated as follows: 

 𝑅′ =
R

R+𝐺+𝐵
 (5) 

 𝐺′ =
G

R+𝐺+𝐵
 (6) 

 𝐵′ =
B

R+𝐺+𝐵
 (7) 

where R, G, and B denote the chromaticity values of the red, 

green, and blue channels, respectively. 

 

2.2 Rock Discontinuity Intelligent Extraction 

 

2.2.1 Random Forest 

 

Random Forest (RF), a machine learning algorithm 

constructed by integrating multiple decorrelated decision 

trees, demonstrates robust resistance to overfitting in handling 

high-dimensional classification tasks (Breiman, 1996). This 

study employs the RF algorithm for multi-target classification 

of rock slope point clouds. By fusing normal vector verticality, 

chromaticity space and local curvature distribution, the 
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method achieves effective identification of rock mass 

discontinuities. The target categories—vegetation, structural 

discontinuities, and unconsolidated deposits—are defined 

based on spectral reflectance discrepancies and 

three-dimensional spatial topological relationships within the 

point cloud data. During node splitting, the algorithm 

randomly selects feature subsets and determines optimal 

splitting thresholds through the Gini index minimization 

criterion. The Gini index is calculated as: 

 𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ (
|𝐶𝑘|

|𝐷|
)
2

𝐾
𝑘=1  (4) 

let D denote the dataset, where Ck represents the subset of 

samples belonging to the k-th class, and K indicates the total 

number of classes. The Gini index quantifies node impurity, 

with lower values corresponding to higher node purity. The 

feature achieving maximal purity gain through binary splitting 

is identified as the optimal splitting feature. 

 

2.2.2 Bayesian Optimization 

 

Bayesian optimization algorithms are widely employed for 

hyperparameter optimization tasks due to their capability to 

rapidly identify optimal configurations (Sameen et al., 2020, 

Sun et al., 2021). When analytical expressions of objective 

functions are unavailable or computationally intractable, these 

algorithms construct Gaussian process (GP) surrogate models 

to estimate the behavior of the objective function (Bull, 2011, 

Gelbart et al., 2014). The critical hyperparameters governing 

random forest (RF) performance comprise: NumTrees 

(number of decision trees), MaxNumSplits (maximum 

splitting operations per tree), and NumPredictorstoSample 

(feature candidates per node split). In this study, these three 

hyperparameters are designated as input variables, with 

fivefold cross-validation accuracy serving as the output 

response. The Bayesian optimization framework is employed 

to determine the optimal hyperparameter configuration for the 

RF model. 

 

2.2.3 Model Evaluation 

 

To validate the efficacy of the optimized model, we employ 

confusion matrix-derived metrics (accuracy, precision, and 

recall) to quantitatively assess classification performance. 

These metrics are formally defined as: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
T𝑃+𝑇𝑁

T𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
T𝑃

T𝑃+𝐹𝑃
 (10) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
T𝑃

T𝑃+𝐹𝑁
 (11) 

where TP (True Positive) denotes correctly classified positive 

instances, FN (False Negative) represents misclassified 

positive instances, FP (False Positive) indicates misclassified 

negative instances, and TN (True Negative) refers to correctly 

classified negative instances. The qualifier "True" signifies 

correct classification, "Positive" corresponds to the target 

class, "False" indicates misclassification, and "Negative" 

refers to non-target classes. 

 

2.3 Discontinuity Segmentation in Point Clouds 

 

2.3.1 Discontinuity Set Identification 

The identification of discontinuity sets constitutes a 

fundamental procedure for the refined characterization of rock 

mass structural planes. The core objective lies in achieving 

accurate partitioning of discrete point clouds into 

corresponding discontinuity sets based on their spatial 

distribution characteristics. This study employs the Mean 

Shift clustering algorithm based on density gradient 

estimation, which performs cluster analysis through iterative 

search for local density maxima within point cloud data. By 

defining a dynamic window via kernel functions, the 

algorithm progressively updates centroid positions along the 

probability density gradient direction until convergence to 

stable cluster centers. Compared with conventional clustering 

methods, the proposed algorithm exhibits the following 

distinctive advantages: (1) It eliminates the need for 

predefining cluster quantities and adaptively identifies 

structural plane point sets with arbitrary spatial topologies; (2) 

Only the bandwidth parameter is required to control clustering 

precision, while demonstrating robust anti-interference 

capability against measurement noise and outliers. 

 

2.3.2 Recognition of individual discontinuity 

 

To accurately calculate individual discontinuity set 

parameters, a secondary clustering process is implemented to 

subdivide each discontinuity from the principal orientation 

cluster. The DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) algorithm is employed for this 

hierarchical classification, enabling the identification of 

distinct planar features with similar spatial distributions 

within the primary cluster. As a robust density-based 

clustering algorithm, DBSCAN initiates by randomly 

selecting an XYZ coordinate (designated as point p) from the 

principal cluster. A predefined radial distance (eps) 

establishes a neighborhood around the selected seed point. 

When the number of neighboring points within this radius 

meets or exceeds a specified minimum threshold (MinPts), 

point p is classified as a core point. Conversely, points failing 

to satisfy this density criterion are categorized as border 

points. All core points and their associated neighboring points 

within the eps radius are subsequently grouped into a cohesive 

cluster. This iterative process continues until all 

density-reachable core points are assigned to corresponding 

clusters, while isolated core points form new cluster entities. 

 

2.4 Plane Fitting 

 

The RANSAC method is an iterative algorithm that can 

estimate the parameters of a fitted surface model from a 

dataset (Raguram et al., 2008, FISCHLER AND, 1981). It is 

extensively used for shape detection (Nguyen and Le, 2013, 

Xu et al., 2015), including the identification of building 

façades (Adam et al., 2018, Boulaassal et al., 2007) and roof 

(Chen et al., 2014). The computational workflow initiates by 

randomly selecting three non-collinear points to establish 

parametric plane models through linear equation derivation, 

followed by iterative verification of geometric consistency 

among neighboring points against predefined spatial tolerance 

thresholds. Points satisfying this proximity criterion are 

aggregated into an inlier consensus set, while those exceeding 

the threshold are classified as statistical outliers. Through 

cyclic hypothesis generation and validation, the planar 

configuration exhibiting maximum consensus set cardinality 
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is retained as the optimal solution. Subsequent removal of 

inlier-associated data points triggers search domain 

reinitialization, with this iterative process persisting until 

exhaustive detection of latent planar surfaces is achieved. 

Final surface validation is governed by consensus set 

population metrics, systematically discarding plane 

hypotheses demonstrating subcritical inlier densities while 

preserving geometrically significant surfaces with substantial 

consensus point concentrations. 

 

RANSAC implementation yields the plane equation in the 

form of (Ax + By + Cz + D = 0), where A, B, and C are the 

unit normal vector components of the best-fit plane. The dip 

and the dip direction of the planes are found using Eqs. (12) 

and (13). 

 𝐷𝑖𝑝 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =

{
 
 

 
 90 − tan

−1 (
𝐵

𝐴
) 𝐴 > 0

0° 𝐴 = 0 𝑎𝑛𝑑 𝐵 ≥ 0
180° 𝐴 = 0 𝑎𝑛𝑑 𝐵 < 0

270 − tan−1 (
𝐵

𝐴
) 𝐴 < 0

 (12) 

 𝐷𝑖𝑝 = {
0° A2 + 𝐵2 = 0

90 − tan−1 (
|𝐶|

√𝐴2+𝐵2
) 𝐴2 + 𝐵2 ≠ 0

 (13) 

3. Results 
 

This study utilized a DJI Mavic 3E unmanned aerial vehicle 

(UAV) equipped with an integrated Real-Time Kinematic 

(RTK) positioning system for photogrammetric data 

acquisition. To preserve detailed slope characteristics, an 

oblique flight path was employed during data collection, 

maintaining a constant distance of 10 meters between the 

UAV and the target rock slope surface. An image overlap rate 

of 80% was configured to ensure sufficient tie points for 

subsequent 3D model reconstruction. A representative rock 

slope along a highway in Yanbian Korean Autonomous 

Prefecture, Jilin Province, China was selected as the case 

study (Figure 2), featuring an inclination angle of 

approximately 60° with sandstone as the predominant 

lithology. 

 
Figure 2: Point clouds of the research case 

The field data presented in Figure 3 were classified into two 

distinct categories: a discontinuity dataset comprising 

113,264 points (marked in yellow) and a non-discontinuity 

dataset containing 135,629 points (marked in blue). To 

determine the optimal neighborhood size (k) for feature 

extraction, we conducted an analysis of the discontinuity 

dataset, where the normal vectors of fracture planes were 

expected to converge with increasing sampling scale.  

 
Figure 3: Learning samples. The yellow point clouds are the 

rock discontinuity sampling points, and the biue point clouds 

are the non-discontinuity sampling points 

Prior to model training, we implemented class-balanced 

sampling by randomly selecting 100,000 data points from 

each category, resulting in a balanced dataset comprising 

200,000 points in total. The dataset was then partitioned into 

training and validation subsets with an 8:2 ratio, where the 

training set served for model development and parameter 

optimization while the validation set was reserved for 

performance evaluation. For hyperparameter tuning, we 

employed Bayesian optimization coupled with five-fold 

cross-validation, executing 50 optimization iterations with 

classification accuracy as the evaluation metric. The optimal 

parameter configuration identified through this systematic 

process is presented in Table 1. 

Table 1: RF hyperparameters obtained via Bayesian 

optimization 
Hyperparameter Searching space Value 

Number of learners [10–500] 375 

Maximum number of splits [1–319999] 454891 
Number of predictors to sample [1–9] 5 

 

To maximize feature learning from the complete dataset, we 

trained the final model using optimized hyperparameters, 

successfully classifying all slope point clouds and labeling a 

total of 3,291,750 discontinuity points. As illustrated in 

Figure 5, the classified discontinuity points are superimposed 

on the original point cloud for visual verification. While the 

classifier missed some high-roughness discontinuity points, 

the overall identification accuracy remains satisfactory. 

During the identification process, large rough discontinuities 

may appear as fragmented patches while maintaining 

structural integrity, whereas smaller rough discontinuities 

might be filtered out as scattered points - a reasonable 

compromise given that even expert geologists often struggle 

to distinguish such features from debris. For the classified 

discontinuity point cloud, the Mean Shift (MS) algorithm 

automatically identified six principal discontinuity sets, 

completing the secondary classification. All discontinuity 

points were then grouped according to their principal 

orientations. The clustering results are visually presented in 

Figure 6 by overlaying directional subsets with the original 

point cloud. Finally, DBSCAN segmentation was applied to 

each principal orientation set, extracting 313 individual 

discontinuities and completing the tertiary classification. This 

comprehensive approach ensures complete discontinuity 

extraction while maintaining computational efficiency. 
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Figure 5: The results of identification and classification of all 

discontinuities and non-discontinuities 

 

 

 

 

 

 

 
Figure 6: Discontinuity identification and classification result. 

The point clouds shown in each specific color represent the 

rock discontinuities identified as belonging to the same set. 

4. Discussion 
 

The deployment of unmanned aerial vehicles (UAVs) has 

revolutionized rock slope investigations in challenging 

environments. Compared to terrestrial laser scanning (TLS) 

and handheld mobile laser scanning (H-MLS) systems, 

UAV-mounted platforms offer unparalleled flexibility to 

navigate along slope profiles, significantly minimizing scan 

occlusions while capturing high-fidelity point cloud data. 

Although this aerial approach effectively overcomes 

environmental constraints during data acquisition, the critical 

challenge of accurately identifying and differentiating 

discontinuities from other geological features within complex 

rock mass formations remains unresolved. While the 

technology primarily addresses data collection limitations, it 

does not fundamentally solve the core problem of automated 

discontinuity recognition in heterogeneous slope conditions. 

 

To effectively identify discontinuities in complex geological 

environments, this study proposes a multi-stage hierarchical 

processing framework. The methodology is systematically 

organized into three progressive phases: initial point cloud 

classification, followed by orientation-based clustering, and 

concluding with individual discontinuity extraction. This 

structured approach integrates the strengths of supervised 
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learning for complex feature recognition with the efficiency 

of unsupervised techniques for segmentation tasks, ensuring 

both comprehensive coverage and high-precision results. 

 

4.1 Performance of the RF Classifier 

 

To evaluate the effectiveness of the model, the optimized 

version with tuned hyperparameters was applied to classify 

the test dataset. Performance was assessed using confusion 

matrix analysis, which yielded an overall classification 

accuracy of 89.2% for discontinuity identification (Figure 7). 

This result significantly surpasses the minimum practical 

threshold of 60–70% accuracy proposed by Weidner and 

Walton for engineering geology applications, a benchmark 

derived from their comprehensive analysis of 2,560 random 

forest classifiers. The achieved performance underscores the 

model’s reliability and confirms its suitability for practical use 

in rock discontinuity analysis. 

 
Figure 7: The confusion matrix of test set. 

The discontinuity category demonstrates superior 

performance, with precision and recall reaching 95.7% and 

96.1%, respectively. The feature selection strategy prioritizes 

planar structural characteristics, such as geometric attributes 

and local descriptors, which enhances the ability of the 

random forest model to effectively identify discontinuities. 

This approach not only improves detection accuracy but also 

maintains interpretability for non-specialists. In practice, the 

study adopts a balanced approach by incorporating 

fundamental features like color and slope, thereby avoiding 

unnecessary complexity that could arise from over-optimizing 

the classification of secondary geographic elements. The 

established performance threshold considers discontinuities 

satisfactory when both precision and recall exceed 90%, a 

standard well above the minimum acceptable level for 

geological applications. 

 

The classification performance varies among 

non-discontinuity categories. This inter-class confusion 

phenomenon corroborates findings reported by Weidner and 

Walton, indicating inherent limitations in distinguishing 

between soil and fractured regions using conventional point 

cloud features. While advanced analytical methods could 

potentially enhance discrimination, such refinements fall 

beyond the scope of this study, which primarily focuses on 

discontinuity identification. From a practical engineering 

perspective, the current classification performance for all 

non-discontinuity categories remains operationally viable, 

given that the primary objective is accurate discontinuity 

detection rather than exhaustive classification of 

non-discontinuity features. 

 

The developed classifier may however demonstrate 

constrained generalizability—a prevalent issue in geoscience 

applications owing to substantial geographical variations in 

natural features. While enhancing model generalizability 

frequently involves trade-offs with recognition accuracy, our 

methodology emphasizes high-precision identification 

tailored for localized engineering applications. Given the 

rigorous accuracy requirements for discontinuity 

measurements and the inherently site-specific nature of 

construction projects, we intentionally trained the machine 

learning model exclusively on data from the study area. This 

localized training approach aligns with prevailing best 

practices in engineering applications, where models are 

customarily developed for specific regional contexts rather 

than universal applicability. 

 

4.2 The Effectiveness of the Main Direction Identification 

 

Through visual comparative analysis, the identification results 

of rock discontinuity sets in each case demonstrated a high 

degree of consistency with the manually measured data. 

When identifying rock surfaces with well-developed planar 

features, the recognition results exhibited large-scale 

continuous clusters of point clouds belonging to a single 

category. Taking the J1 discontinuity set in the case as an 

example, which represents a near-slope aspect structural plane 

with wide distribution and good extensibility, the 

identification results accurately reflected the spatial 

distribution characteristics of this discontinuity set. For 

complex rock mass areas where local planar features change 

significantly or multiple structural planes intersect, the 

identification results showed that the point clouds 

corresponding to different discontinuity sets exhibited a 

mutually intersecting and overlapping distribution pattern. 

During the research process, the system did not forcibly 

merge point clouds from different discontinuity sets in 

localized regions. Instead, distinctions were made based on 

their actual characteristics, effectively preserving the local 

geometric morphology and spatial distribution details of 

different rock structural planes. Furthermore, for 

discontinuity sets with low distribution density and limited 

spatial extent, such as the J3 set, the method also achieved 

accurate identification and reasonable classification, 

demonstrating the algorithm's capability to handle sparse data. 

 

In the comparative analysis of orientation measurement 

results, the largest discrepancy occurred in the J3 

discontinuity set, with a maximum dip angle error of 3.74°. 

This discrepancy primarily stems from the inherent 

complexity of the field data: the discontinuities of the J3 set 

are spatially dispersed, and the number of data points is 

relatively low, resulting in less pronounced statistical 

characteristics of the orientation compared to other sets. This 

data sparsity and distribution discreteness increase the 

difficulty of accurate identification and orientation 
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measurement, which constitutes the main cause of the error. 

Nonetheless, the error remains within the acceptable range for 

engineering geological applications, and algorithmic 

optimizations have further reduced the impact of such errors. 

 

5. Conclusion 
 

This study presents an innovative methodology system for 

intelligent identification and characterization of rock 

discontinuities, which integrates unmanned aerial vehicle 

(UAV) photogrammetry with machine learning technologies. 

The method employs a multi-level classification strategy, 

combining random forest classification, mean shift clustering, 

and DBSCAN segmentation algorithms to construct a 

comprehensive automated analysis framework. Initially, 

high-resolution 3D point cloud data is acquired via UAV, and 

an optimized random forest classifier is utilized to accurately 

identify structural planes. Subsequently, mean shift clustering 

is applied to intelligently group the orientation characteristics 

of the structural planes, followed by the use of the DBSCAN 

algorithm to extract individual discontinuities. The entire 

workflow adopts a hierarchical and progressive approach, 

integrating multi-dimensional features—including geometric, 

spectral, and spatial data—which effectively mitigates 

common engineering interferences such as complex terrain, 

vegetation coverage, and irregular structural planes, thereby 

significantly improving analytical accuracy. 

 

The method demonstrates excellent engineering applicability. 

Its flexible framework supports parameter adjustment and 

functional expansion, while the use of a UAV platform 

overcomes the spatial limitations inherent in traditional 

surveying equipment. Compared with conventional methods 

such as terrestrial laser scanning, this technique offers distinct 

advantages in terms of operational efficiency, data coverage, 

and safety—making it particularly suitable for hazardous 

environments such as high and steep slopes. The technology 

enables a fully automated workflow from data acquisition to 

analysis, not only enhancing the efficiency and accuracy of 

structural plane investigations, but also providing reliable 

technical support for the evaluation of rock mass stability and 

the prevention of geological hazards. It holds strong potential 

to become a vital technical tool in the field of geological 

surveying. 
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