ISSN: 2322-0856

DOI: 10.534697jpce. 2026.08(01).03

Multi-objective Optimization of Passive Flexible
Protection Network Layouts for Rockfall Hazards
Based on Evolutionary Algorithms

Journal of Progress in Civil Engineering

Jiayu Yan!, Shengwu Qin"*, Yong Tao?, Wendi Rao?, Zhenmin Chen', Shuhao Dong'

!College of Construction Engineering, Jilin University, Changchun 130061, Jilin, China
2Jilin Geological Environment Monitoring Center (Jilin Geological Disaster Emergency Technical Guidance Center),
Changchun 130021, Jilin, China
*Correspondence Author, qginsw@jlu.edu.cn

Abstract: Rockfall disasters pose a severe threat to infirastructure safety, and the rational design of passive flexible protection network
layouts is critical for disaster mitigation. Taking the Guanmenla rockfall area in Ji’an City, Jilin Province as a case study, this paper
develops an optimization framework for protection net placement by coupling rockfall numerical simulation with multi-objective
evolutionary algorithms. Firstly, a three-dimensional rockfall motion model was established using the RAMMS software. Through 129,000
Monte Carlo simulations, the statistical distribution characteristics of key dynamic parameters—including rockfall trajectories, velocities,
kinetic energy, and bounce heights—were obtained. Subsequently, a multi-objective optimization model aimed at maximizing the
interception rate and minimizing engineering costs was constructed, with the Pareto optimal solution set solved via the NSGA-II algorithm.
The results indicate that the 95th percentile bounce height along the road is 2.04 m, with kinetic energy ranging from 500 to 3200 KJ The
optimized scheme adopts a zonal cascading protection strategy, incorporating a total of four flexible protection nets. This configuration
achieves a total interception rate of 98.43% with a total engineering cost of 368,440 RMB. Verification through back-simulation in
RAMMS demonstrated an error of less than 0.5%. This research establishes a systematic workflow from dynamic parameter extraction to

scheme optimization and validation, providing a scientific basis for the design of rockfall protection engineering.

Keywords: Rockfall, Passive flexible protection networks, NSGA-II, Multi-objective optimization.

1. Introduction

Rockfall is a typical slope-related geological hazard,
characterized by the detachment of unstable rock masses from
slopes under external forces, which subsequently roll, bounce,
and collide until they finally accumulate at the slope toe (He
et al.,, 2014). Such disasters are characterized by high
frequency, complex triggering factors, wide spatial
distribution, rapid onset, and severe destructiveness. Their
high-velocity impact poses a significant threat to
infrastructure at the slope toe, such as buildings and major
transportation arteries. Furthermore, rockfalls can trigger
secondary disasters, leading to large-scale ecological damage
and socio-economic losses (Yu et al., 2020; Zhang, 1993;
Zhang et al., 2004).

Regarding the prevention and control of rockfall hazards,
existing technical measures can be classified into four
categories: active slope stabilization, rigid passive protection,
flexible passive protection, and auxiliary protective measures
(Zhang et al., 2021). Among these, passive flexible protection
networks dissipate rockfall kinetic energy through large
geometric nonlinear deformations of the structure and
significant slippage between components. Due to their
adaptability to complex terrain, high energy-absorption
capacity, cost-effectiveness, and short construction periods,
they have increasingly become the mainstream choice for
rockfall disaster mitigation (Zhao et al., 2023).

With the advancement of computational technology,
numerical simulation has become an essential tool for rockfall
motion analysis. Simulation methods are generally divided
into two-dimensional (2D) and three-dimensional (3D)
approaches (NanYa et al., 1996). 2D methods, typically based

on the lumped-mass model (e.g., RocFall software), often lead
to biased results due to the neglect of lateral movement (Liu,
2012). D methods are more consistent with real-world
conditions; for instance, RocPro3D employs a probabilistic
rigid-body approach, while the Discrete Element Method
(DEM) calculates force transmission between particles
through contact mechanics models (Sarro et al., 2014). The
RAMMS software, jointly developed by ETH Zurich and the
WSL Institute, utilizes a non-smooth contact dynamics
algorithm based on hard contact laws. Unlike traditional
restitution coefficient methods, RAMMS assumes that rock-
ground interactions are primarily governed by frictional
dissipation mechanisms, allowing for a more natural
simulation of transitions between motion modes such as
bouncing, rolling, and sliding (Yang et al., 2023).

In terms of protection system research, (Gottardi & Govoni,
2010) conducted full-scale impact tests ranging from500kJ to
5000 kJ verifying the interception capacity of flexible nets.
(Zhao et al., 2013) revealed the three-stage dynamic response
characteristics of these systems through 11 sets of full-scale
tests. Given the high cost and limited data of field trials,
researchers have turned to numerical simulation. (Fu, 2021)
proposed a collaborative active-passive protection scheme
based on Rockfall software, (Zhong, 2021) analyzed the
dynamic response of networks to optimize structural design.
(Zhou et al., 2012) found that the deformation and peak impact
force of flexible nets are linearly related to impact velocity and
rock size, noting that small-sized rocks tend to create a "bullet
effect,”" penetrating the protection net.

However, existing research exhibits a gap in the systematic
integration of rockfall kinematic characteristics and the
scientific design of protection networks. In engineering
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practice, parameters and layouts of protection nets are often
determined based on empirical judgment or simplified 2D
calculations. This semi-empirical approach frequently leads to
insufficient protective capacity, resulting in structural failure
and recurring disasters. Although numerical simulations can
accurately predict rockfall trajectories and dynamic
parameters, there is a lack of a systematic optimization
framework that comprehensively considers multiple
objectives such as interception efficiency, energy dissipation,
and cost.

Therefore, taking the Guanmenla rockfall area in Ji’an City,
Jilin Province as a case study, this paper constructs a design
framework for protection net layouts by integrating rockfall
numerical simulation with multi-objective optimization
algorithms. First, a 3D rockfall motion model is established
using the RAMMS platform to reveal motion patterns and
extract key dynamic parameters, including trajectories,
velocities, kinetic energy, and bounce heights. Subsequently,
a multi-objective optimization model for passive flexible
protection net placement is constructed to maximize
interception rates and energy dissipation efficiency while
minimizing costs. The layout scheme is then optimized using
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the NSGA-II algorithm and validated through numerical
simulation. Through this approach, this study establishes an
integrated optimization framework coupling numerical
simulation with evolutionary algorithms, achieving a
systematic workflow from dynamic parameter extraction to
optimization validation, thereby providing a scientific basis
for the design of protection networks.

2. Study Area

The study area is located in Ji'an City, southeastern Jilin
Province, China, under the jurisdiction of Tonghua City. The
region is bounded by longitudes 125°34'E to 126°02'E and
latitudes 40°52'N to 41°35'N, encompassing a total area of
3,341 km?. The Guanmenla rockfall site, the primary focus of
this investigation, is situated in Yulin Town, approximately 30
km south of the Ji'an urban center. Notably, the hazard zone is
immediately adjacent to National Highway G506, a critical
transportation corridor linking Ji'an with townships along the
Yalu River. This highway serves as a vital artery for regional
freight, passenger transit, and cross-border tourism (Figure 1).
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Figure 1: Location of the study area

The rockfall hazards in this region are driven by a synergy of
anthropogenic and natural factors. Historical road
construction, specifically slope-toe excavation, combined
with intense precipitation during the summer monsoon, has
triggered progressive rock mass deterioration and created over
steepened slope configurations. Consequently, frequent
rockfall events pose a persistent threat to vehicular and
pedestrian safety along the highway corridor.

The collapse-prone slope exhibits the morphology of a high-
steep rock cliff, trending northeast-southwest. It has a
longitudinal extension of approximately 350 m and a
transverse width of 200 m, covering an area of roughly 6.2 x
10* m?. Topographic surveys indicate that the slope crest
reaches an elevation of 361 m above sea level, while the toe
sits at 131 m, resulting in a maximum vertical relief of 230 m.
The average slope gradient is approximately 52°, with
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localized cliff sections reaching 70° to 85°, characterizing a
typical high-steep slope system. The predominant slope aspect
is 310° (northwest-facing), which is nearly perpendicular to
the highway alignment. This geometric configuration creates
unfavorable structural conditions; specifically, daylight-
facing discontinuities facilitate toppling and planar failure
mechanisms, directly endangering the underlying roadway
infrastructure.

3. Materials and Methods
3.1 Numerical Simulation Method for Rockfall Movement

The RAMMS (Rapid Mass Movement Simulation) software,
jointly developed by ETH Zurich and the WSL Institute for
Snow and Avalanche Research (https://ramms.ch/), is
specifically designed to simulate the rigid-body motion
characteristics of rockfalls. The software employs six primary
state variables to describe the kinematic features of a rockfall:
three translational velocity components and three rotational
angular velocity components. Based on these variables, key
parameters such as kinetic energy, trajectories, and bounce
heights can be calculated. Crucially, the orientation and
rotational velocity of the rock are fully accounted for during
the rock-ground interaction process (Kumar et al., 2024).

In contrast to the restitution coefficient methods adopted by
most rockfall simulation programs, RAMMS introduces an
innovative Non-smooth Contact Dynamics (NSCD) algorithm
based on the Hard Contact Law. This approach posits that
rock-ground interactions are not solely controlled by simple
elastic rebounding mechanics; instead, the primary motion
modes—bouncing, rolling, and sliding—are governed by
frictional dissipation mechanisms during the contact process.
This theoretical framework enables a more natural simulation
of the transitions between motion modes, thereby avoiding the
uncertainties associated with stochastically assigned rebound
parameters in traditional methods (Li et al., 2021).

In RAMMS, the contact force is modeled as a hard unilateral
constraint with Coulomb friction characteristics and is solved
using non-smooth frictional contact dynamics. When the rock
mass contacts the ground, the equation of motion is expressed
as follows:

Mg =F(q,q)+G"(q)A

Where M(q) is the mass matrix, g and g epresent the
generalized coordinates and generalized velocities,
respectively; F(q, q) is the external force vector (a function of
rock position and velocity) including gravity and gyroscopic
forces;A is the contact force vector, GT (q) is the transpose of
the contact Jacobian, which defines the direction of the contact
forces. Depending on the geometry of the rock mass at the
contact point, multiple contact forces may be active
simultaneously (Caviezel et al., 2021).

To detect the contact state between the rock mass and the
rebounding surface, the contact point is simultaneously
subjected to a normal contact force and a tangential frictional
contact force. These forces are treated as constraint reaction
forces that alter the rockfall's direction of motion. The contact
state of the rigid rock mass is determined by continuously
monitoring the normal gap between the rock’s characteristic

vertices and their corresponding projected points on the
rebounding surface. The gap function is defined as:

gnz(rp_rc)'n

Where 7, is the position vector of the projected point on the
rebounding surface, 7, is the position vector of the rock mass
vertex, n is the unit normal vector of the contact surface.

The criteria for determining contact conditions follow these
rules: when g,, > 0, the rigid rock mass is separated from the
ground, the contact force 4,, = 0, and the rock is in free flight.
When g,, <, contact or penetration occurs, and the contact
force must be calculated to prevent further penetration. The
software allows for a minimum penetration depth to
accurately assess contact states under complex topographic
conditions (Lu et al., 2019).

The non-smooth contact dynamics approach in RAMMS
offers several distinct advantages: Explicit Physical
Mechanism: It circumvents the randomness inherent in
empirical parameters like restitution coefficients. Natural
Mode Transition: It seamlessly captures the transitions
between rockfall motion modes (bouncing, rolling, and
sliding). Complex Dissipation Modeling: It accounts for the
intricate mechanisms of ground deformation and energy
dissipation. It is highly applicable to complex terrains and
diverse soil/rock material conditions. This software is
particularly well-suited for research requiring precise
simulation of rock-ground interaction mechanisms and
engineering applications such as the structural load analysis of
protective systems.

3.2 Mathematical Description
Optimization Problems

of Multi-objective

A Multi-Objective Optimization Problem (MOOP) refers to a
mathematical programming problem that requires the
simultaneous optimization of two or more objective functions.
Such problems are prevalent in practical fields such as
engineering design, resource allocation, and production
scheduling. Unlike single-objective optimization, the various
objectives in a MOOP are typically in conflict with one
another. Consequently, it is often impossible to find a single
solution that minimizes all objectives simultaneously; instead,
the goal is to identify an optimal set of trade-offs between the
competing objectives (Kumar et al., 2024).

The general mathematical form of a multi-objective
optimization problem can be formulated as follows:

Objective Functions: F(x) = [f; (), f,(X), -, fm(x)]"

gi(x)<0,i=12,--,p
Constraints: hj(x) = 0,j = 1,2,--,q
XEQ

Where X = [xq,X5,,%,]7 is the n-dimensional decision
variable vector, representing the design parameters to be
determined. F(x) is the m-dimensional objective function
vector, containing the m objectives to be optimized
simultaneously. g;(x) and h;(x) represent the i-th inequality
constraint and j-th equality constraint, respectively. Q denotes
the feasible region in the decision variable space, defined by
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the collective constraints. Any x that satisfies all constraints is
termed a feasible solution, and the set of all such solutions
constitutes the feasible set. (Moral & Dulikravich, 2008).

Traditional approaches to solving MOOPs include the
weighted sum method, the €-constraint method, and goal
programming. These methods typically convert the multi-
objective problem into a single-objective one. However, they
yield only one solution per run and require repeated iterations
with adjusted parameters to obtain multiple trade-off options.
With the development of evolutionary computation,
population-based Multi-Objective Evolutionary Algorithms
(MOEAs) have become the mainstream approach. MOEAs
can obtain multiple, uniformly distributed Pareto optimal
solutions in a single simulation run (Yannibelli & Amandi,

2013).

The mapping of the Pareto optimal set into the objective space
is known as the Pareto Front PF™:

PF* = {F(x") = [A(x"), LX)+, fn X)]T|x" € P7}

The Pareto front delineates the trade-off boundary between
objective functions, intuitively illustrating the "cost" of
improving one objective in terms of the degradation of others.
For a bi-objective minimization problem, the Pareto front
typically appears as a downward-sloping curve or polyline in
the objective space, moving from the upper-left to the lower-
right. (Development of Parallel Multiobjective Genetic
Algorithm for Designing Flexible Systems-All Databases,
n.d.).

Pareto Front in Two-Dimensional Objective Space
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Figure 2: Schematic diagram of the Pareto front in the two-dimensional target space

3.3 Analysis of the Multi-objective Characteristics of
Guard Net Layout Issues

The optimization of protection network layouts is
fundamentally a trade-off between two competing objectives:
maximizing the rockfall interception rate and minimizing the
associated engineering construction costs. A profound conflict
exists between these goals, as the primary mechanisms for
enhancing interception efficiency—such as increasing the
spatial coverage of nets, elevating net heights to capture high-
trajectory boulders, and deploying higher energy-rated
components—inevitably lead to a substantial escalation in
capital expenditure (Volkwein et al., 2011). Conversely, any

attempt to curtail costs by reducing the number of structures
or lowering their technical specifications directly
compromises the system's capacity to mitigate high-energy
impacts, potentially resulting in structural failure or bypass
events. Consequently, the core of the engineering challenge
lies in identifying a rational equilibrium between safety
performance and budgetary constraints.

The essence of this conflict lies in the divergent response
directions of the interception rate and cost relative to the
configuration parameters. Let w represent the integrated
configuration level of the protection network (a composite
manifestation of quantity, height, and energy capacity). The
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interception rate R (w) typically increases monotonically with
w, as does the engineering cost C(w). Consequently, there is
no single configuration level w* that simultaneously
maximizes R(w) and minimizes C(w) (Ferrari et al., 2016).
This inherent lack of a single optimal solution necessitates the
application of Pareto optimization methods, which are
particularly suited for problems characterized by conflicting
objectives, mixed-integer decision variables, and non-convex
feasible regions.

Furthermore, employing a Pareto-dominant Multi-Objective
Evolutionary Algorithm (MOEA) to address this layout
problem provides several distinct advantages over traditional
optimization techniques. Primarily, MOEAs are capable of
generating a uniformly distributed set of Pareto optimal
solutions within a single computational execution, thereby
providing a comprehensive mapping of the trade-off
landscape between safety and cost. This population-based
search mechanism is exceptionally robust in navigating the
complexities of mixed-integer variables and complex
constraints, significantly reducing the risk of the model
converging to local optima. Moreover, by bypassing the
requirement to pre-assign subjective weight coefficients to the
objective functions, the algorithm ensures a more objective
optimization process. This allows decision-makers to evaluate
the entire set of non-dominated solutions and select a final
configuration that aligns with the specific risk tolerance and
financial conditions of the project. Additionally, the inherent
scalability of the MOEA framework facilitates the seamless
integration of further optimization objectives or site-specific
constraints, making it a highly adaptable tool for complex
geological engineering applications.

3.4 Principles and Implementation of NSGA-II Algorithm

The Non-dominated Sorting Genetic Algorithm IT (NSGA-II),
proposed by Deb et al. in 2002, serves as the computational
engine for the multi-objective optimization in this study. As
one of the most widely applied evolutionary algorithms in
engineering, NSGA-II addresses the limitations of its
predecessor by incorporating several critical innovations
(Zhao et al., 2018). Most notably, the algorithm utilizes a fast
non-dominated sorting strategy that reduces computational
complexity from O(MN3) to O(MN2), where M is the number
of objectives and N is the population size. Furthermore, the
introduction of a crowding distance mechanism eliminates the
need for user-defined sharing parameters, while the
implementation of an elitist strategy ensures that superior
individuals are preserved throughout the evolutionary process.
These features collectively endow NSGA-II with exceptional
convergence properties and the ability to maintain diverse
solutions along the Pareto front (Zhang & Lu, 2021).

In addressing the continuous optimization problem of
protection net placement, a real-number encoding scheme is
adopted. Each individual's chromosome is represented by a
X= [xllyl'zl' hl,---,xn,yn,zn, hn] ,  Where (xi:yi;zi) i
denotes the spatial coordinates of the i-th protection net, h;
represents its corresponding height. The selection process
employs a binary tournament strategy, which identifies
superior candidates for the mating pool based on the crowding
distance comparison operator. To explore the search space,
Simulated Binary Crossover (SBX) is utilized, with the

distribution of offspring around the parents controlled by a
distribution index 7n.. Local search and population diversity
are further enhanced through polynomial mutation, which
introduces random perturbations to gene values governed by
a mutation distribution index 1,,.

The specific parameter configuration for the algorithm was
determined based on established literature and preliminary
experimental results, as detailed in Table 1. A population size
of 100 was selected to balance global search capability with
computational efficiency, while the maximum number of
generations was set to 300 to ensure sufficient convergence.
The crossover probability was maintained at 0.9 to facilitate
robust exploration, and the mutation probability was set to
1/16 to prevent premature convergence by maintaining
genetic diversity. Standard values of 20 were assigned to the
distribution indices for both SBX 7, and polynomial
mutation 7., providing a stable distribution for offspring
generation.

Table 1: Parameter Configuration of NSGA-II Algorithm

Parameter Symbol Value Basis
Population Balancing search capability and
. N 100 . .
size computational efficiency
Maximum Ensuring sufficient convergence
. . T s 300 .
iterations of the algorithm
Crossover 09 Guaranteeing robust global
probability Pe ’ exploration capability
Mutation Ule Maintaining population genetic
probability P diversity
SBX nn 20 Adopting standard empirical
cm values
4. Results

4.1 Establishment of 3D Terrain Model

To obtain high-resolution imagery of the study area, this
research utilized Unmanned Aerial Vehicle (UAV)
photogrammetry. A multi-rotor UAV equipped with a high-
precision camera was deployed to perform systematic aerial
surveys, capturing a dense sequence of images that
encompassed the entire rockfall site and its surrounding
vicinity. Based on advanced image processing algorithms,
feature point extraction, matching, and three-dimensional
reconstruction were executed to generate a high-precision
Digital Surface Model (DSM).

To account for the spatial distribution and physical extent of
rockfall movement, regional optimization of the ground point
model was performed. Initially, the boundaries of the potential
rockfall impact zone were delineated within a Geographic
Information System (GIS) platform. This delineation was
based on topographic factors — including source area location,

slope aspect, and gradient — supplemented by field
investigations of historical rockfall distributions and
kinematic characteristics. By integrating topographic

constraints, gravitational orientation, and probable motion
paths, the delineated boundary ensured comprehensive
coverage of all potential impact zones. Subsequently, the 3D
point cloud data underwent refined processing using
specialized software suites, specifically Cloud Compare and
LiDAR360, to enhance data quality.

Following these procedures, the optimized Triangulated
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Irregular Network (TIN) model was converted into a regular
grid-format Digital Elevation Model (DEM). The grid
resolution was established at 0.5 m, providing an optimal
balance between the topographic precision required for
rockfall motion simulation and computational efficiency.
During the DEM generation process, a rigorous quality
control protocol was implemented; elevation statistical
analysis and slope rationality checks were conducted to
identify and rectify anomalous elevation values and data voids,
thereby ensuring the continuity and integrity of the

topographic model.

Ultimately, the refined DEM data were imported into the
RAMMS software platform to construct a high-precision 3D
terrain model tailored for numerical rockfall simulation. This
model accurately reproduces the complex topographic relief,
slope variations, and micro-geomorphic features of the study
area. It serves as a robust foundational dataset for the
subsequent simulation of rockfall trajectories, the analysis of
velocity and kinetic energy evolution, and the systematic
assessment of hazard zonation.
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Figure 3: Digital elevation model and orthophoto of the study area

4.2 Setting of Rockfall Model Parameters

To precisely determine the geometric parameters required for
the simulation, a multi-source data fusion approach was
implemented. Initially, UAV oblique photogrammetry was
employed to perform 3D scanning of the rockfall source areas
and the boulders scattered across the slope, facilitating the
acquisition of their spatial distribution and morphological
characteristics. Furthermore, systematic field geological
investigations were conducted to perform in-situ
measurements and statistical analyses of the shapes, triaxial
dimensions, and masses of representative rock blocks. By
synthesizing the morphological statistics of historical rockfall
samples, the predominant shape types and the characteristic
size distribution patterns within the study area were
effectively identified.

Based on these empirical datasets, geometric models of rock
blocks reflecting the actual site conditions were established
within the "Rock Builder" module of the RAMMS software.
To account for the scale variations of unstable rock masses in
the source area and the grain-size distribution of historical
rockfalls, five distinct size classes of polyhedral rock models

were constructed. The geometric configurations for each
model were calibrated against the field-measured data, while
the density parameters were assigned in accordance with the
specific lithological characteristics of the site. The detailed
parameter settings for these models are summarized in Table
2.

Table 2: Falling Rock Modeling Parameters of RAMMS

ROCKFALL
D Shape ]?(egr;lsllltzy Mass kg Volilllzme
1 Actual Morphology 2700 21.5 0.008
2 Actual Morphology 2700 172.8 0.064
3 Actual Morphology 2700 926.4 0.343
4 Actual Morphology 2700 2703.2 1.0
5 Actual Morphology 2700 5381.72 2.0

4.3 Calibration and Validation of Key Parameters

The RAMMS software incorporates a comprehensive terrain
classification system derived from extensive field rockfall
experiments and comparative laboratory simulations. This
system pre-defines 13 selectable terrain categories (Table 3),
encompassing common geomorphic units such as bedrock,
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scree slopes, soil-covered surfaces, and vegetated areas. The
user manual provides illustrative examples and selection
methodologies for each category, alongside recommended
values for slope mechanical parameters, enabling users to
assign appropriate terrain characteristics based on site-specific
geological conditions.

Table 3: Terrain Category and Friction Parameter Default

Values of RAMMS ROCKFALL
Terrain Mg
Category Example (Mpa) Ca
River/ Marsh, grassland_, hydromorphic 02 1000
Swamp soil
Topsoil Meadow, steppe 3 1.55
Deep soil Unpaved mountain roads, alpine 4 18
meadow
Forest Forested areas 5.5 1.2
Vegetated Small-grained scree with good 6 21
scree vegetation cover ’
Fine scree Pebbles (unvegetated), d<5cm, 7 23
d50S5cm
Msiilelz:m Unvegetated, d<20cm, dso<10cm 10 2.7
Coarse scree Unvegetated, d<50cm, dsp<30cm 15 3.5
Large blocks Boulders / Talus 20 3.5
Mountain Mountainous roads 50 2
road
Asphalt road Asphalted surfaces 75 2
Bedrock Outcropping rock, cliffs 100 4
Snow Accumulated snow 0.1 1

In the RAMMS model, two pivotal parameters—ground
strength (ME) and the drag coefficient (Cd) —significantly
influence energy dissipation during rockfall motion. ME,
expressed as a modulus of elasticity in units of Mpa, is a

125°55'0"E 125°55'10"E 125°55'20"E
N i i

geotechnical parameter describing the deformation
characteristics of the surface material. It characterizes the
pressure required to achieve a specific strain or settlement
within a given soil layer. A higher ME value indicates greater
ground stiffness, resulting in shallower indentations upon
impact and, consequently, lower energy dissipation during
rock-ground interactions. In essence, ground stiffness
increases proportionally with ME, with hard bedrock
exhibiting significantly higher values than loose,
unconsolidated soil. Complementarily, the drag coefficient Cd
governs the magnitude of viscous resistance experienced by
the rock during contact. A higher Cdvalue exerts a stronger
retarding effect as the rock moves across the surface, leading
to greater energy dissipation. This coefficient primarily
reflects the influence of the viscoplastic properties and surface
roughness of the terrain on the kinematic evolution of the
rockfall.

For this investigation, a systematic parameter calibration was
performed based on the environmental characteristics of the
unstable rock mass. The bedrock in the study area consists
primarily of gneiss, while land-use types on the slope include
forest and agricultural land. By integrating detailed field
geological survey results with the material composition and
surface features of different geomorphic units, a localized
terrain classification scheme was established. Specifically, the
weathered rock cliffs in the rockfall source area were
classified as Bedrock; the areas covered by slope wash and
residual deposits were designated as Fine scree; and the
residential areas at the slope toe were assigned the Topsoil
category, as illustrated in Figure 4.
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Figure 4: Ground type classification map and release location diagram

To accurately reflect the grain-size distribution characteristics
of rockfalls within the study area, five pre-established size
classes of rockfall models were released from each designated
release point in a quantitative ratio of 3:3:2:1:1, resulting in a
total of 100 rockfall samples per simulation. This ratio
configuration was meticulously designed by integrating the
statistical grain-size distribution of historical rockfall events
with the discontinuity cutting patterns of unstable rock masses.

This approach ensures that the high-frequency occurrence of
small-diameter rock blocks is adequately represented while
simultaneously accounting for the significant hazard threats
posed by larger-scale rock masses.

To fully incorporate stochastic factors during the kinematic
evolution of rockfalls, the Monte Carlo method was
implemented across multiple simulation iterations. In each
simulation run, the initial orientations (rotational angles) and
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minor spatial perturbations of the release positions for each
rock block were generated via random distributions. This
methodology effectively replicates the random nature of rock
mass instability encountered in actual collapse events.
Through the iterative release of these 100 rockfall samples, a
total of 129,000 independent rockfall trajectories were
generated. This substantial dataset provides a robust statistical
foundation for subsequent analysis of dynamic parameters and
the systematic assessment of rockfall hazards.
4.4 Feature Extraction and Analysis of Rockfall
Movement

Rockfall motion frequency, defined as the cumulative number
of rockfall passages within a unit grid, serves as an essential
metric reflecting the spatial concentration of trajectories and
the intensity of the hazard. High-frequency zones signify a
pronounced convergence of rockfall paths, where the terrain
is subjected to frequent impacts and elevated disaster threat
levels. Consequently, these areas represent critical target
locations for the strategic deployment of protection
engineering.

The simulation results, illustrated in Figure 5, reveal a
pronounced spatial heterogeneity in rockfall frequency, with
cumulative values ranging from 0 to 254 passages per grid cell.
To effectively delineate the hazard intensity across the terrain,
these frequencies are systematically classified into five
distinct intervals, each associated with a specific color-coded
hazard level. Specifically, the low-frequency zone comprises
0 to 23 passages (dark green), while the medium-low and
medium-frequency zones are demarcated by ranges of 23 to
63 (yellow-green) and 63 to 116 (yellow), respectively. As the
trajectory convergence intensifies, the medium-high
frequency zone is defined by 116 to 179 passages (orange),
culminating in the high-frequency zone (179 to 254 passages,
red). These high-frequency areas identify the primary
corridors of rockfall activity and represent the most critical
zones where the probability of impact is maximized, thereby
providing a preliminary spatial basis for the subsequent
optimization of protective structures.
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Figure 6: Spatial distribution of rockfall bounce height

During rockfall motion, the bounce height is defined as the
vertical distance between the moving rock block and the slope
surface directly beneath it. It serves as a critical kinematic
parameter for evaluating both the energy evolution and the
hazard intensity of rockfall events. Based on the data extracted
from RAMMS simulations, the bounce height characteristics
within the study area were comprehensively analyzed through
a combination of global spatial distribution and localized
profile assessments at the slope toe. As illustrated in the
regional distribution map (Figure 5), the bounce height ranges
from 0 to 2494 m, exhibiting pronounced spatial
heterogeneity.

Generally, the high-value zones of bounce height are
characterized by a discontinuous, patchy distribution. This
spatial pattern is intrinsically consistent with the intermittent
nature of rockfall kinematics, where rock blocks undergo
successive cycles of "free fall—impact—rebound—descent."
The magnitude of each bounce is governed by a complex
interplay of stochastic factors, including the local micro-
topography at the impact point, the orientation of the rock
mass, and the incident angle. Consequently, these dynamics
manifest as significant spatial non-uniformity across the slope
surface.

To further quantify the specific threats posed to the
transportation infrastructure at the slope toe, a representative
longitudinal profile was established along the adjacent
highway (Figure 6). This profile, extending approximately
400 m, captures the variation in rockfall bounce heights at
different positions along the vulnerable road segment. A
specialized statistical analysis of the 1,322 valid data points
recorded along this corridor (Figure 7) revealed that bounce
heights range from 0.25 to 4.94 m, with a mean value of 1.18
m and a median of 1.1 m (standard deviation = 0.50 m). The
overall dataset exhibits a characteristically right-skewed
distribution, indicating that while most rockfalls maintain a
relatively low bounce height near the road, the potential for
high-clearance impacts remains a critical factor for the design
of passive protection systems.
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Figure 6: Profile of rockfall bounce height
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Figure 7: Statistical distribution
Rockfall velocity is a fundamental parameter that

characterizes both the kinetic energy and the destructive
impact potential of rock mass movements. By integrating
velocity data derived from RAMMS numerical simulations
with comprehensive spatial distribution and slope-toe profile
analyses, the evolutionary characteristics of rockfall velocity
and their subsequent implications for protection design can be
rigorously evaluated. As illustrated in the three-dimensional
velocity distribution map (Figure 8), magnitudes range from 0
to 31.21 m/s, exhibiting a pronounced spatial gradient.

Macroscopically, the velocity field displays a distinct spatial
transition, characterized by a gradient from high-velocity
regimes on the steep source cliffs to moderate speeds across
the slope surface, and eventually decelerating to lower
velocities at the slope toe. In contrast to the patchy and
discrete distribution observed in the bounce height analysis,
the high-velocity zones demonstrate greater spatial continuity
and concentration. These velocities form ribbon-like corridors
aligned with the primary rockfall pathways, reflecting the
directional acceleration of rock masses driven by gravity
along the terrain's principal fall lines.

A refined statistical assessment of the 1,322 valid data points
recorded along the highway corridor (Figure 9) indicates that

velocities vary between 0.02 and 15.5 m/s, with a mean of 3.85
m/s and a median of 3.09 m/s (standard deviation = 2.86 m/s).
The overall dataset is markedly right-skewed, suggesting that
while the majority of rockfalls reach the road at moderate
speeds, the potential for high-velocity impacts remains a
significant design consideration.

The longitudinal velocity profile established along the
highway alignment (Figure 10) further elucidates complex
spatial fluctuations in impact intensity. In the western section,
velocities exhibit intense fluctuations; the 95th percentile
(Q95%) velocity histogram shows concentrations between 12
and 1 m/s, with local peaks approaching 1 m/s. The vertical
displacement between the rockfall scatter points and the
topographic line indicates that motion in this segment is
dominated by high-velocity bouncing, confirming that this
section lies within a primary motion corridor characterized by
high-energy impact intensity.

While the middle section displays a moderate decline in
velocity—with most values maintained between 8 and 15 m/s
and a sparse distribution—the eastern section shows a
resurgent increase in velocity. In this latter segment, velocities
predominantly range from 10 to 20 m/s, with local maxima
exceeding 20 m/s. The significant elevation of several red
scatter points above the terrain line implies that rock masses
traverse this section in a state of high-velocity flight or bounce.
Such high-speed trajectories indicate that rockfalls possess the
potential to bypass the roadway entirely, posing a direct threat
to the infrastructure and the areas situated further down slope.
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Figure 8: Spatial distribution of rockfall velocity
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Figure 11: Spatial distribution of rockfall kinetic energy

Rockfall kinetic energy serves as the primary determinant for
protection engineering design, as it directly dictates the
requisite energy-rating selection for protective structures. By
integrating kinetic energy data derived from RAMMS
numerical simulations with comprehensive spatial distribution
patterns and localized slope-toe profile analyses, a
quantitative framework is established for the selection and
deployment of protective measures. As illustrated in the three-
dimensional spatial distribution map (Figure 11), the kinetic
energy ranges from 0 to 10,852 kJ, exhibiting pronounced
spatial gradients and distinct topographic channeling features.

Rockfall kinetic energy serves as the primary determinant for
protection engineering design, as it directly dictates the
requisite energy-rating selection for protective structures. By
integrating kinetic energy data derived from RAMMS
numerical simulations with comprehensive spatial distribution
patterns and localized slope-toe profile analyses, a
quantitative framework is established for the selection and
deployment of protective measures. As illustrated in the three-
dimensional spatial distribution map (Figure 11), the kinetic
energy ranges from 0 to 10,852 kJ, exhibiting pronounced
spatial gradients and distinct topographic channeling features.

Macroscopically, the energy field follows a clear spatial
gradient transition: high-energy concentrations are primarily
situated at the source cliffs, followed by moderate-to-high
energy diffusion across the slope, and ultimately decelerating
to moderate-to-low energy levels at the slope toe. Compared

to the velocity distribution, the high-energy zones are
significantly more localized and exhibit a much broader
numerical span. This phenomenon reflects the compounded
effect of rock mass disparities and velocity fluctuations,
providing a scientific rationale for implementing hierarchical
fortification strategies across the site.

The longitudinal kinetic energy profile established along the
highway alignment (Figure 12) reveals intense spatial
fluctuations in impact intensity. A refined statistical analysis
of the 1,322 valid data points within the roadside corridor
(Figure 13) indicates a kinetic energy range of 0 to 3,195.2 kI,
with a mean of 262.01 kJ and a median of 90.74 kJ (standard
deviation = 421.14 kJ). The overall dataset displays a
characteristically  extreme  right-skewed  distribution,
underscoring the dominance of low-to-moderate energy
events punctuated by high-magnitude impacts.

The profile analysis further highlights the significant non-
uniformity of energy distribution along the roadway.
Specifically, the western and eastern segments are identified
as high-energy threat zones, where the 95th percentile
(Q_95%) kinetic energy values range between 1,000 and
3,000 kJ. In contrast, the middle section is characterized as a
relatively low-energy zone, with Q 95% values remaining
below 500 kJ. This spatial divergence underscores the
channeling characteristics of rockfall trajectories and provides
a robust empirical basis for the sectional design and energy-
level optimization of protection systems.
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Figure 12: Kinetic energy profile along the slope toe
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To quantitatively evaluate the spatial distribution of rockfall
hazards in the Guanmenla area, this study implemented a
multi-factor weighted superposition method for hazard
zonation, utilizing kinematic parameters derived from
RAMMS numerical simulations. Based on the disaster-
causing mechanisms of rockfall events, three key
parameters—rockfall frequency, bounce height, and kinetic
energy—were selected as the primary hazard evaluation
indicators. Specifically, frequency represents the probability
of occurrence, bounce height reflects the kinematic state of the
rock masses, and kinetic energy quantifies their destructive
potential. Drawing upon the hazard evaluation framework of
the Rockfall Analysis software, the weighting coefficients
were assigned as 0.5 for frequency, 0.2 for bounce height, and
0.3 for kinetic energy. The resulting hazard zonation is
illustrated in Figure 14.
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Figure 14: Spatial zonation of rockfall hazards in the study
area

The results demonstrate that very high hazard zones are
primarily concentrated across the upper and central portions
of the cliff's western and northeastern sectors, exhibiting a
distinct ribbon-like distribution pattern. These areas
correspond to the primary rockfall motion corridors,
representing core threat zones where frequency, bounce height,
and kinetic energy simultaneously attain maximum values.
Notably, the very high hazard zone on the western side of the
cliff extends directly to the slope toe, forming a continuous
high-risk conduit that poses an immediate threat to the
underlying roadway and residential areas. Although the very
high hazard zone on the northeastern side is relatively smaller
in area, it exhibits similar characteristics of high frequency
and high energy intensity. The formation of these zones is
predominantly governed by steep topographic gradients,
highly fragmented rock mass structures, and directional
acceleration driven by gravity. High hazard zones are
distributed peripherally to the very high hazard areas,
maintaining close connectivity and displaying a fan-shaped
outward diffusion. These zones correspond to the margins of
the primary motion paths and secondary motion corridors;
despite a localized reduction in certain kinematic parameters,
the integrated hazard level remains substantial. Large-scale
high hazard zones are present on both the western side and the
center of the cliff, indicating a degree of trajectory divergence
in the rockfall motion. Moderate hazard zones are extensively

distributed across the middle and lower slopes, appearing in
broad, sheet-like patterns. While the overall rockfall threat is
attenuated in these regions, localized high-risk points may still
emerge in areas characterized by significant topographic relief
or abrupt changes in slope gradient. It is noteworthy that the
central portion of the residential area at the slope toe falls
within the moderate hazard zone, with houses situated near the
eastern side of the cliff particularly exposed to significant
rockfall risk. Finally, low hazard zones are predominantly
located at the margins of the impact area and in regions far
removed from the primary motion corridors. Although the
probability of direct impact is relatively low in these zones,
the possibility of isolated high-velocity rockfalls reaching
these locations under extreme conditions cannot be entirely
discounted.

4.5 Verification and Evaluation of Optimization Schemes

Based on the RAMMS numerical simulation results, a multi-
objective optimization model for the layout of passive flexible
protection networks was established. Following the hazard
zonation analysis, the threatened road segments were
categorized into four critical protection sector (M1, M2, M3,
M4). For each sector, the decision variables included the
network height h; € [3.0,6.0] m, energy capacity C; €
{1500,2000,3000,4000,5000} kJ, network length L; and the
specific placement orientation.

The objective functions of the optimization model were
formulated to maximize the interception efficiency while
simultaneously minimizing the total economic expenditure:

N.
maxR — intercepted % 100%
Ntotal

: _\yn
mlnCtotal = Zi:l (Cunit,i ' Li + Cinstall,i)

Where R denotes the interception rate, Nipterceptea 1S the
number of successfully intercepted rockfalls, N;y.q; i the
total number of simulated samples. C;,:q; represents the
cumulative project cost, Cypir is the unit material cost per
meter, which fluctuates between 1,200 and 2,500 RMB/m
depending on the required energy rating.

To ensure the structural integrity and functional reliability of
the proposed mitigation measures, the optimization process
was governed by several rigorous engineering constraints.
Primarily, the design height of each flexible network was
required to be no less than the 95th percentile bounce height
of 2.04m recorded at its respective deployment location.
Furthermore, the energy-absorption capacity of each structure
was mandated to meet or exceed the local 95th percentile
kinetic energy to prevent structural failure upon impact.
Additionally, the longitudinal spacing and alignment between
adjacent networks were meticulously configured to comply
with the relevant technical codes and design specifications for
rockfall protection engineering.

The multi-objective optimization problem was solved using
the NSGA-II algorithm, which achieved computational
convergence at the 265th generation. The resulting optimal
layout adopts a zonal cascading protection strategy,
incorporating a total of four flexible protection networks
strategically positioned across the high-risk corridors. This
integrated configuration achieves a high level of disaster
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resilience, providing a total interception rate of 98.43%. The
overall engineering cost for the proposed scheme is estimated
at 368,440 RMB, demonstrating an efficient balance between
safety performance and economic investment as detailed in
Table 4.

Table 4: Optimized design parameters and performance
metrics of the protection system

. Energy Sector

I;I]gt E;f)tl?; I:Izr‘(ﬁl Capacity Le(Elg)th Interception
(k) (%)

M1 Group 1 5.0 5000 120.3 96.6
M2 Group 1 49 4402 140.9
M3 Group 2 3.6 3252 194.9 99.8
M4 Group 2 3.8 3923 170.8
Total 98.43

The interception efficiency of the optimized scheme across the
four designated protection sectors is illustrated in Figure 15.
The individual interception rates for sectors M1 through M4
were determined to be 94.6%, 71.9%, 94.3%, and 83.9%,
respectively. These performance variations are primarily
governed by the localized interplay of rockfall frequency,
energy distribution, and topographic constraints within each
sector. To achieve an optimal allocation of resources, the
scheme deploys high-energy dense protection in the
northwestern high-risk sectors (M1-M2), while a medium-
energy cascading strategy is implemented for the southeastern
moderate-to-high risk sectors (M3—-M4).

The final configuration is organized into two distinct
cascading protection systems. The first group (M2 — MI1)
specifically targets the primary western rockfall corridor,
achieving a combined interception rate of 96.6% with a total
investment of 191,030 RMB. In this system, network M2 is
configured with a height of 5.0 m, an energy capacity of 5,000
kJ, and a length of 120.3 m, while M1 serves as a downstream
barrier with a height of 4.9 m, an energy capacity of 4,402 kJ,
and a length of 140.9 m. This high-energy specification is
necessitated by the extreme kinetic energy recorded in the
western corridor, where the 95th percentile values reach 3,200
kJ.

The second group (M4-M3) addresses the southeastern
secondary corridor, yielding a superior combined interception
rate of 99.8% at a cost of 177,41 RMB. The parameters for
M4 include a height of 3.2 m, an energy capacity of 3,362 kJ,
and a length of 194.9 m, complemented by M3 with a height
of 3.8 m, an energy capacity of 3,923 kJ, and a length of 170.8
m. The significantly higher interception efficiency of this
second group is attributed to the smaller rockfall grain sizes,
lower kinetic energies, and more favorable topographic
conditions characteristic of the southeastern slope.

Regarding the spatial arrangement, networks M1 and M2 are
strategically positioned within the northwestern high-risk
zone to establish a robust defense-in-depth. Conversely, M3
and M4 are deployed in the southeastern sector, following the
topographic contours in a curvilinear, arched distribution. All
four flexible networks are located within high or very high
hazard zones, strictly adhering to the design principle of
"prioritized protection with a sparse-to-dense upslope-
downslope gradient." This contour-aligned placement
maximizes the effective interception area and ensures a more
uniform distribution of impact forces across the structural

components, thereby facilitating both construction feasibility
and long-term maintenance.

166 Overview of Zonal Protection Network Layout
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Figure 15: Layout of the optimized protection scheme

Figure 16: Back-verification results in RAMMS
To validate the predictive accuracy and engineering reliability
of the proposed model, the optimized design parameters were
re-integrated into the RAMMS platform for comprehensive
back-verification. Within this simulation environment, the
protection networks were modeled as flexible barriers
endowed with specific energy-absorption characteristics. The
interception outcomes were determined by the mechanical
relationship between the rockfall’s impact kinetic energy and
the designated energy capacity of the protective structure. The
verification results yielded an actual interception rate of
98.43%, demonstrating a high degree of congruence with the
optimization framework's predicted values, with a relative
error of less than 0.5%.

A detailed statistical analysis of the penetrating rock masses
was conducted to elucidate the limitations of the protective
system. The findings indicate that the majority of non-
intercepted rocks (85%) belonged to the minimum size class
(21.5 kg), while 10% and 5% were categorized into the
second-smallest and medium size classes, respectively.
Notably, the kinetic energy of all penetrating rocks remained
below 200 kJ, significantly lower than the design thresholds
of the barriers. Spatially, the trajectories of these penetrating
masses were primarily concentrated at the lateral boundaries
of the protection networks and within the transition zones
between the two primary functional groups.
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5. Conclusions

Taking the Guanmenla rockfall area in Ji'an City, Jilin
Province, as a case study, this research establishes a design
framework for passive flexible protection network layout by
coupling three-dimensional numerical simulation with a
multi-objective optimization algorithm. By integrating
RAMMS-based rockfall motion analysis with the NSGA-II
optimization algorithm, an effective equilibrium between
interception efficiency and engineering cost is achieved.
Based on a 0.5 m resolution DEM and 129,000 Monte Carlo
simulations, the statistical distribution of rockfall dynamics
was characterized. The 95th percentile values for jump height
and velocity along the road were determined to be 2.04 m and
9.12 m/s, respectively, while the 95th percentile kinetic
energy reached 3,200 kJ in the western section and ranged
from 500 to 2,800 kJ in the eastern section. Through a multi-
factor weighted evaluation integrating frequency, jump height,
and kinetic energy, two primary rockfall channels on the
western and northeastern slopes were quantitatively identified,
providing a rigorous basis for protection deployment.

The developed multi-objective optimization model, which
seeks to maximize interception rates while minimizing costs,
reached convergence at the 265th generation using the NSGA -
IT algorithm. The resulting optimal scheme consists of four
protection networks with a total interception rate of 98.43%
and a total engineering cost of 368,440 RMB. Specifically,
high-energy networks (4,402-5,000 kJ) are deployed for
intensive protection in the northwestern high-risk zone, while
medium-energy networks (3,362—3,923 kJ) provide extended
coverage in the southeastern medium-to-high-risk zone. Back-
verification using RAMMS demonstrates that the error
between optimization predictions and actual simulation values
is less than 0.5%. Compared to traditional empirical methods,
this framework ensures a more objective selection of
protection measures, significantly reducing costs while
maintaining a high level of interception efficiency.
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