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Abstract: Rockfall disasters pose a severe threat to infrastructure safety, and the rational design of passive flexible protection network 

layouts is critical for disaster mitigation. Taking the Guanmenla rockfall area in Ji’an City, Jilin Province as a case study, this paper 

develops an optimization framework for protection net placement by coupling rockfall numerical simulation with multi-objective 

evolutionary algorithms. Firstly, a three-dimensional rockfall motion model was established using the RAMMS software. Through 129,000 

Monte Carlo simulations, the statistical distribution characteristics of key dynamic parameters—including rockfall trajectories, velocities, 

kinetic energy, and bounce heights—were obtained. Subsequently, a multi-objective optimization model aimed at maximizing the 

interception rate and minimizing engineering costs was constructed, with the Pareto optimal solution set solved via the NSGA-II algorithm. 

The results indicate that the 95th percentile bounce height along the road is 2.04 m, with kinetic energy ranging from 500 to 3200 KJ The 

optimized scheme adopts a zonal cascading protection strategy, incorporating a total of four flexible protection nets. This configuration 

achieves a total interception rate of 98.43% with a total engineering cost of 368,440 RMB. Verification through back-simulation in 

RAMMS demonstrated an error of less than 0.5%. This research establishes a systematic workflow from dynamic parameter extraction to 

scheme optimization and validation, providing a scientific basis for the design of rockfall protection engineering. 

 

Keywords: Rockfall, Passive flexible protection networks, NSGA-II, Multi-objective optimization.  

 

1. Introduction 
 

Rockfall is a typical slope-related geological hazard, 

characterized by the detachment of unstable rock masses from 

slopes under external forces, which subsequently roll, bounce, 

and collide until they finally accumulate at the slope toe (He 

et al., 2014). Such disasters are characterized by high 

frequency, complex triggering factors, wide spatial 

distribution, rapid onset, and severe destructiveness. Their 

high-velocity impact poses a significant threat to 

infrastructure at the slope toe, such as buildings and major 

transportation arteries. Furthermore, rockfalls can trigger 

secondary disasters, leading to large-scale ecological damage 

and socio-economic losses (Yu et al., 2020; Zhang, 1993; 

Zhang et al., 2004). 

 

Regarding the prevention and control of rockfall hazards, 

existing technical measures can be classified into four 

categories: active slope stabilization, rigid passive protection, 

flexible passive protection, and auxiliary protective measures 

(Zhang et al., 2021). Among these, passive flexible protection 

networks dissipate rockfall kinetic energy through large 

geometric nonlinear deformations of the structure and 

significant slippage between components. Due to their 

adaptability to complex terrain, high energy-absorption 

capacity, cost-effectiveness, and short construction periods, 

they have increasingly become the mainstream choice for 

rockfall disaster mitigation (Zhao et al., 2023). 

 

With the advancement of computational technology, 

numerical simulation has become an essential tool for rockfall 

motion analysis. Simulation methods are generally divided 

into two-dimensional (2D) and three-dimensional (3D) 

approaches (NanYa et al., 1996). 2D methods, typically based 

on the lumped-mass model (e.g., RocFall software), often lead 

to biased results due to the neglect of lateral movement (Liu, 

2012). D methods are more consistent with real-world 

conditions; for instance, RocPro3D employs a probabilistic 

rigid-body approach, while the Discrete Element Method 

(DEM) calculates force transmission between particles 

through contact mechanics models (Sarro et al., 2014). The 

RAMMS software, jointly developed by ETH Zurich and the 

WSL Institute, utilizes a non-smooth contact dynamics 

algorithm based on hard contact laws. Unlike traditional 

restitution coefficient methods, RAMMS assumes that rock-

ground interactions are primarily governed by frictional 

dissipation mechanisms, allowing for a more natural 

simulation of transitions between motion modes such as 

bouncing, rolling, and sliding (Yang et al., 2023). 

 

In terms of protection system research, (Gottardi & Govoni, 

2010) conducted full-scale impact tests ranging from500kJ to 

5000 kJ verifying the interception capacity of flexible nets. 

(Zhao et al., 2013) revealed the three-stage dynamic response 

characteristics of these systems through 11 sets of full-scale 

tests. Given the high cost and limited data of field trials, 

researchers have turned to numerical simulation. (Fu, 2021) 

proposed a collaborative active-passive protection scheme 

based on Rockfall software, (Zhong, 2021) analyzed the 

dynamic response of networks to optimize structural design. 

(Zhou et al., 2012) found that the deformation and peak impact 

force of flexible nets are linearly related to impact velocity and 

rock size, noting that small-sized rocks tend to create a "bullet 

effect," penetrating the protection net. 

 

However, existing research exhibits a gap in the systematic 

integration of rockfall kinematic characteristics and the 

scientific design of protection networks. In engineering 
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practice, parameters and layouts of protection nets are often 

determined based on empirical judgment or simplified 2D 

calculations. This semi-empirical approach frequently leads to 

insufficient protective capacity, resulting in structural failure 

and recurring disasters. Although numerical simulations can 

accurately predict rockfall trajectories and dynamic 

parameters, there is a lack of a systematic optimization 

framework that comprehensively considers multiple 

objectives such as interception efficiency, energy dissipation, 

and cost. 

 

Therefore, taking the Guanmenla rockfall area in Ji’an City, 

Jilin Province as a case study, this paper constructs a design 

framework for protection net layouts by integrating rockfall 

numerical simulation with multi-objective optimization 

algorithms. First, a 3D rockfall motion model is established 

using the RAMMS platform to reveal motion patterns and 

extract key dynamic parameters, including trajectories, 

velocities, kinetic energy, and bounce heights. Subsequently, 

a multi-objective optimization model for passive flexible 

protection net placement is constructed to maximize 

interception rates and energy dissipation efficiency while 

minimizing costs. The layout scheme is then optimized using 

the NSGA-II algorithm and validated through numerical 

simulation. Through this approach, this study establishes an 

integrated optimization framework coupling numerical 

simulation with evolutionary algorithms, achieving a 

systematic workflow from dynamic parameter extraction to 

optimization validation, thereby providing a scientific basis 

for the design of protection networks. 

 

2. Study Area  
 

The study area is located in Ji'an City, southeastern Jilin 

Province, China, under the jurisdiction of Tonghua City. The 

region is bounded by longitudes 125°34′E to 126°02′E and 

latitudes 40°52′N to 41°35′N, encompassing a total area of 

3,341 km². The Guanmenla rockfall site, the primary focus of 

this investigation, is situated in Yulin Town, approximately 30 

km south of the Ji'an urban center. Notably, the hazard zone is 

immediately adjacent to National Highway G506, a critical 

transportation corridor linking Ji'an with townships along the 

Yalu River. This highway serves as a vital artery for regional 

freight, passenger transit, and cross-border tourism (Figure 1). 

 
Figure 1: Location of the study area 

The rockfall hazards in this region are driven by a synergy of 

anthropogenic and natural factors. Historical road 

construction, specifically slope-toe excavation, combined 

with intense precipitation during the summer monsoon, has 

triggered progressive rock mass deterioration and created over 

steepened slope configurations. Consequently, frequent 

rockfall events pose a persistent threat to vehicular and 

pedestrian safety along the highway corridor. 

 

The collapse-prone slope exhibits the morphology of a high-

steep rock cliff, trending northeast-southwest. It has a 

longitudinal extension of approximately 350 m and a 

transverse width of 200 m, covering an area of roughly 6.2 × 

10⁴ m². Topographic surveys indicate that the slope crest 

reaches an elevation of 361 m above sea level, while the toe 

sits at 131 m, resulting in a maximum vertical relief of 230 m. 

The average slope gradient is approximately 52°, with  
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localized cliff sections reaching 70° to 85°, characterizing a 

typical high-steep slope system. The predominant slope aspect 

is 310° (northwest-facing), which is nearly perpendicular to 

the highway alignment. This geometric configuration creates 

unfavorable structural conditions; specifically, daylight-

facing discontinuities facilitate toppling and planar failure 

mechanisms, directly endangering the underlying roadway 

infrastructure. 

 

3. Materials and Methods 
 

3.1 Numerical Simulation Method for Rockfall Movement 

 

The RAMMS (Rapid Mass Movement Simulation) software, 

jointly developed by ETH Zurich and the WSL Institute for 

Snow and Avalanche Research (https://ramms.ch/), is 

specifically designed to simulate the rigid-body motion 

characteristics of rockfalls. The software employs six primary 

state variables to describe the kinematic features of a rockfall: 

three translational velocity components and three rotational 

angular velocity components. Based on these variables, key 

parameters such as kinetic energy, trajectories, and bounce 

heights can be calculated. Crucially, the orientation and 

rotational velocity of the rock are fully accounted for during 

the rock-ground interaction process (Kumar et al., 2024). 

 

In contrast to the restitution coefficient methods adopted by 

most rockfall simulation programs, RAMMS introduces an 

innovative Non-smooth Contact Dynamics (NSCD) algorithm 

based on the Hard Contact Law. This approach posits that 

rock-ground interactions are not solely controlled by simple 

elastic rebounding mechanics; instead, the primary motion 

modes—bouncing, rolling, and sliding—are governed by 

frictional dissipation mechanisms during the contact process. 

This theoretical framework enables a more natural simulation 

of the transitions between motion modes, thereby avoiding the 

uncertainties associated with stochastically assigned rebound 

parameters in traditional methods (Li et al., 2021). 

 

In RAMMS, the contact force is modeled as a hard unilateral 

constraint with Coulomb friction characteristics and is solved 

using non-smooth frictional contact dynamics. When the rock 

mass contacts the ground, the equation of motion is expressed 

as follows: 

 𝑀𝑞̈ = 𝐹(𝑞, 𝑞̇) + 𝐺𝑇(𝑞)𝜆  

Where  𝑀(𝑞)  is the mass matrix, 𝑞 and 𝑞̇  epresent the 

generalized coordinates and generalized velocities, 

respectively; 𝐹(𝑞, 𝑞̇) is the external force vector (a function of 

rock position and velocity) including gravity and gyroscopic 

forces;𝜆 is the contact force vector, 𝐺𝑇(𝑞) is the transpose of 

the contact Jacobian, which defines the direction of the contact 

forces. Depending on the geometry of the rock mass at the 

contact point, multiple contact forces may be active 

simultaneously (Caviezel et al., 2021). 

 

To detect the contact state between the rock mass and the 

rebounding surface, the contact point is simultaneously 

subjected to a normal contact force and a tangential frictional 

contact force. These forces are treated as constraint reaction 

forces that alter the rockfall's direction of motion. The contact 

state of the rigid rock mass is determined by continuously 

monitoring the normal gap between the rock’s characteristic 

vertices and their corresponding projected points on the 

rebounding surface. The gap function is defined as: 

 𝑔𝑛 = (𝑟𝑝 − 𝑟𝑐) ⋅ 𝑛  

Where 𝑟𝑝 is the position vector of the projected point on the 

rebounding surface, 𝑟𝑐  is the position vector of the rock mass 

vertex, 𝑛 is the unit normal vector of the contact surface. 

 

The criteria for determining contact conditions follow these 

rules: when 𝑔𝑛 > 0, the rigid rock mass is separated from the 

ground, the contact force 𝜆𝑛 = 0, and the rock is in free flight. 

When 𝑔𝑛 ≤, contact or penetration occurs, and the contact 

force must be calculated to prevent further penetration. The 

software allows for a minimum penetration depth to 

accurately assess contact states under complex topographic 

conditions (Lu et al., 2019). 

 

The non-smooth contact dynamics approach in RAMMS 

offers several distinct advantages: Explicit Physical 

Mechanism: It circumvents the randomness inherent in 

empirical parameters like restitution coefficients. Natural 

Mode Transition: It seamlessly captures the transitions 

between rockfall motion modes (bouncing, rolling, and 

sliding). Complex Dissipation Modeling: It accounts for the 

intricate mechanisms of ground deformation and energy 

dissipation. It is highly applicable to complex terrains and 

diverse soil/rock material conditions. This software is 

particularly well-suited for research requiring precise 

simulation of rock-ground interaction mechanisms and 

engineering applications such as the structural load analysis of 

protective systems. 

 

3.2 Mathematical Description of Multi-objective 

Optimization Problems 

 

A Multi-Objective Optimization Problem (MOOP) refers to a 

mathematical programming problem that requires the 

simultaneous optimization of two or more objective functions. 

Such problems are prevalent in practical fields such as 

engineering design, resource allocation, and production 

scheduling. Unlike single-objective optimization, the various 

objectives in a MOOP are typically in conflict with one 

another. Consequently, it is often impossible to find a single 

solution that minimizes all objectives simultaneously; instead, 

the goal is to identify an optimal set of trade-offs between the 

competing objectives (Kumar et al., 2024). 

 

The general mathematical form of a multi-objective 

optimization problem can be formulated as follows: 

 

Objective Functions: F(x) = [f1(x), f2(x), ⋯ , fm(x)]T 

 

Constraints: 

gi(x) ⩽ 0, i = 1,2, ⋯ , p

hj(x) = 0, j = 1,2, ⋯ , q

x ∈ Ω

 

 

Where 𝐱 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛]𝑇  is the n-dimensional decision 

variable vector, representing the design parameters to be 

determined. F(x) is the m-dimensional objective function 

vector, containing the m objectives to be optimized 

simultaneously.𝑔𝑖(𝐱) and ℎ𝑗(𝐱) represent the i-th inequality 

constraint and j-th equality constraint, respectively. Ω denotes 

the feasible region in the decision variable space, defined by 
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the collective constraints. Any x that satisfies all constraints is 

termed a feasible solution, and the set of all such solutions 

constitutes the feasible set. (Moral & Dulikravich, 2008). 

 

Traditional approaches to solving MOOPs include the 

weighted sum method, the 𝜀 -constraint method, and goal 

programming. These methods typically convert the multi-

objective problem into a single-objective one. However, they 

yield only one solution per run and require repeated iterations 

with adjusted parameters to obtain multiple trade-off options. 

With the development of evolutionary computation, 

population-based Multi-Objective Evolutionary Algorithms 

(MOEAs) have become the mainstream approach. MOEAs 

can obtain multiple, uniformly distributed Pareto optimal 

solutions in a single simulation run (Yannibelli & Amandi,  

 

2013). 

 

The mapping of the Pareto optimal set into the objective space 

is known as the Pareto Front 𝑃𝐹∗: 

 𝑃𝐹∗ = {𝐅(𝐱∗) = [𝑓1(𝐱∗), 𝑓2(𝐱∗), ⋯ , 𝑓𝑚(𝐱∗)]𝑇|𝐱∗ ∈ 𝑃∗}  

The Pareto front delineates the trade-off boundary between 

objective functions, intuitively illustrating the "cost" of 

improving one objective in terms of the degradation of others. 

For a bi-objective minimization problem, the Pareto front 

typically appears as a downward-sloping curve or polyline in 

the objective space, moving from the upper-left to the lower-

right. (Development of Parallel Multiobjective Genetic 

Algorithm for Designing Flexible Systems-All Databases, 

n.d.). 

 
Figure 2: Schematic diagram of the Pareto front in the two-dimensional target space 

3.3 Analysis of the Multi-objective Characteristics of 

Guard Net Layout Issues 

 

The optimization of protection network layouts is 

fundamentally a trade-off between two competing objectives: 

maximizing the rockfall interception rate and minimizing the 

associated engineering construction costs. A profound conflict 

exists between these goals, as the primary mechanisms for 

enhancing interception efficiency—such as increasing the 

spatial coverage of nets, elevating net heights to capture high-

trajectory boulders, and deploying higher energy-rated 

components—inevitably lead to a substantial escalation in 

capital expenditure (Volkwein et al., 2011). Conversely, any 

attempt to curtail costs by reducing the number of structures 

or lowering their technical specifications directly 

compromises the system's capacity to mitigate high-energy 

impacts, potentially resulting in structural failure or bypass 

events. Consequently, the core of the engineering challenge 

lies in identifying a rational equilibrium between safety 

performance and budgetary constraints. 

 

The essence of this conflict lies in the divergent response 

directions of the interception rate and cost relative to the 

configuration parameters. Let 𝑤  represent the integrated 

configuration level of the protection network (a composite 

manifestation of quantity, height, and energy capacity). The 
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interception rate 𝑅(𝑤) typically increases monotonically with 

𝑤, as does the engineering cost 𝐶(𝑤). Consequently, there is 

no single configuration level 𝑤∗  that simultaneously 

maximizes 𝑅(𝑤) and minimizes 𝐶(𝑤) (Ferrari et al., 2016). 

This inherent lack of a single optimal solution necessitates the 

application of Pareto optimization methods, which are 

particularly suited for problems characterized by conflicting 

objectives, mixed-integer decision variables, and non-convex 

feasible regions. 

 

Furthermore, employing a Pareto-dominant Multi-Objective 

Evolutionary Algorithm (MOEA) to address this layout 

problem provides several distinct advantages over traditional 

optimization techniques. Primarily, MOEAs are capable of 

generating a uniformly distributed set of Pareto optimal 

solutions within a single computational execution, thereby 

providing a comprehensive mapping of the trade-off 

landscape between safety and cost. This population-based 

search mechanism is exceptionally robust in navigating the 

complexities of mixed-integer variables and complex 

constraints, significantly reducing the risk of the model 

converging to local optima. Moreover, by bypassing the 

requirement to pre-assign subjective weight coefficients to the 

objective functions, the algorithm ensures a more objective 

optimization process. This allows decision-makers to evaluate 

the entire set of non-dominated solutions and select a final 

configuration that aligns with the specific risk tolerance and 

financial conditions of the project. Additionally, the inherent 

scalability of the MOEA framework facilitates the seamless 

integration of further optimization objectives or site-specific 

constraints, making it a highly adaptable tool for complex 

geological engineering applications. 

 

3.4 Principles and Implementation of NSGA-II Algorithm 

 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II), 

proposed by Deb et al. in 2002, serves as the computational 

engine for the multi-objective optimization in this study. As 

one of the most widely applied evolutionary algorithms in 

engineering, NSGA-II addresses the limitations of its 

predecessor by incorporating several critical innovations 

(Zhao et al., 2018). Most notably, the algorithm utilizes a fast 

non-dominated sorting strategy that reduces computational 

complexity from O(MN3) to O(MN2), where M is the number 

of objectives and N is the population size. Furthermore, the 

introduction of a crowding distance mechanism eliminates the 

need for user-defined sharing parameters, while the 

implementation of an elitist strategy ensures that superior 

individuals are preserved throughout the evolutionary process. 

These features collectively endow NSGA-II with exceptional 

convergence properties and the ability to maintain diverse 

solutions along the Pareto front (Zhang & Lu, 2021). 

 

In addressing the continuous optimization problem of 

protection net placement, a real-number encoding scheme is 

adopted. Each individual's chromosome is represented by a 

𝐱 = [𝑥1, 𝑦1, 𝑧1, ℎ1, ⋯ , 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛, ℎ𝑛] , Where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) 𝑖 
denotes the spatial coordinates of the i-th protection net, ℎ𝑖 

represents its corresponding height. The selection process 

employs a binary tournament strategy, which identifies 

superior candidates for the mating pool based on the crowding 

distance comparison operator. To explore the search space, 

Simulated Binary Crossover (SBX) is utilized, with the 

distribution of offspring around the parents controlled by a 

distribution index 𝜂c. Local search and population diversity 

are further enhanced through polynomial mutation, which 

introduces random perturbations to gene values governed by 

a mutation distribution index 𝜂𝑚. 

 

The specific parameter configuration for the algorithm was 

determined based on established literature and preliminary 

experimental results, as detailed in Table 1. A population size 

of 100 was selected to balance global search capability with 

computational efficiency, while the maximum number of 

generations was set to 300 to ensure sufficient convergence. 

The crossover probability was maintained at 0.9 to facilitate 

robust exploration, and the mutation probability was set to 

1/16 to prevent premature convergence by maintaining 

genetic diversity. Standard values of 20 were assigned to the 

distribution indices for both SBX  𝜂𝑚  and polynomial 

mutation 𝜂c , providing a stable distribution for offspring 

generation. 

Table 1: Parameter Configuration of NSGA-II Algorithm 
Parameter Symbol Value Basis 

Population 

size 
N 100 

Balancing search capability and 

computational efficiency 
Maximum 

iterations 
Tmax 300 

Ensuring sufficient convergence 

of the algorithm 

Crossover 
probability 

p
c
 0.9 

Guaranteeing robust global 
exploration capability 

Mutation 

probability 
p
m

 1/16 
Maintaining population genetic 

diversity 

SBX η
c
,η

m
 20 

Adopting standard empirical 

values 

 

4. Results 
 

4.1 Establishment of 3D Terrain Model 

 

To obtain high-resolution imagery of the study area, this 

research utilized Unmanned Aerial Vehicle (UAV) 

photogrammetry. A multi-rotor UAV equipped with a high-

precision camera was deployed to perform systematic aerial 

surveys, capturing a dense sequence of images that 

encompassed the entire rockfall site and its surrounding 

vicinity. Based on advanced image processing algorithms, 

feature point extraction, matching, and three-dimensional 

reconstruction were executed to generate a high-precision 

Digital Surface Model (DSM). 

 

To account for the spatial distribution and physical extent of 

rockfall movement, regional optimization of the ground point 

model was performed. Initially, the boundaries of the potential 

rockfall impact zone were delineated within a Geographic 

Information System (GIS) platform. This delineation was 

based on topographic factors — including source area location, 

slope aspect, and gradient — supplemented by field 

investigations of historical rockfall distributions and 

kinematic characteristics. By integrating topographic 

constraints, gravitational orientation, and probable motion 

paths, the delineated boundary ensured comprehensive 

coverage of all potential impact zones. Subsequently, the 3D 

point cloud data underwent refined processing using 

specialized software suites, specifically Cloud Compare and 

LiDAR360, to enhance data quality. 

 

Following these procedures, the optimized Triangulated 
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Irregular Network (TIN) model was converted into a regular 

grid-format Digital Elevation Model (DEM). The grid 

resolution was established at 0.5 m, providing an optimal 

balance between the topographic precision required for 

rockfall motion simulation and computational efficiency. 

During the DEM generation process, a rigorous quality 

control protocol was implemented; elevation statistical 

analysis and slope rationality checks were conducted to 

identify and rectify anomalous elevation values and data voids, 

thereby ensuring the continuity and integrity of the  

 

topographic model. 

 

Ultimately, the refined DEM data were imported into the 

RAMMS software platform to construct a high-precision 3D 

terrain model tailored for numerical rockfall simulation. This 

model accurately reproduces the complex topographic relief, 

slope variations, and micro-geomorphic features of the study 

area. It serves as a robust foundational dataset for the 

subsequent simulation of rockfall trajectories, the analysis of 

velocity and kinetic energy evolution, and the systematic 

assessment of hazard zonation. 

 
Figure 3: Digital elevation model and orthophoto of the study area 

4.2 Setting of Rockfall Model Parameters 

 

To precisely determine the geometric parameters required for 

the simulation, a multi-source data fusion approach was 

implemented. Initially, UAV oblique photogrammetry was 

employed to perform 3D scanning of the rockfall source areas 

and the boulders scattered across the slope, facilitating the 

acquisition of their spatial distribution and morphological 

characteristics. Furthermore, systematic field geological 

investigations were conducted to perform in-situ 

measurements and statistical analyses of the shapes, triaxial 

dimensions, and masses of representative rock blocks. By 

synthesizing the morphological statistics of historical rockfall 

samples, the predominant shape types and the characteristic 

size distribution patterns within the study area were 

effectively identified. 

 

Based on these empirical datasets, geometric models of rock 

blocks reflecting the actual site conditions were established 

within the "Rock Builder" module of the RAMMS software. 

To account for the scale variations of unstable rock masses in 

the source area and the grain-size distribution of historical 

rockfalls, five distinct size classes of polyhedral rock models 

were constructed. The geometric configurations for each 

model were calibrated against the field-measured data, while 

the density parameters were assigned in accordance with the 

specific lithological characteristics of the site. The detailed 

parameter settings for these models are summarized in Table 

2. 

Table 2: Falling Rock Modeling Parameters of RAMMS 

ROCKFALL 

ID Shape 
Density 

kg/m3 
Mass kg 

Volume 

m3 

1 Actual Morphology 2700 21.5 0.008 
2 Actual Morphology 2700 172.8 0.064 

3 Actual Morphology 2700 926.4 0.343 

4 Actual Morphology 2700 2703.2 1.0 
5 Actual Morphology 2700 5381.72 2.0 

 

4.3 Calibration and Validation of Key Parameters 

 

The RAMMS software incorporates a comprehensive terrain 

classification system derived from extensive field rockfall 

experiments and comparative laboratory simulations. This 

system pre-defines 13 selectable terrain categories (Table 3), 

encompassing common geomorphic units such as bedrock, 
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scree slopes, soil-covered surfaces, and vegetated areas. The 

user manual provides illustrative examples and selection 

methodologies for each category, alongside recommended 

values for slope mechanical parameters, enabling users to 

assign appropriate terrain characteristics based on site-specific 

geological conditions. 

Table 3: Terrain Category and Friction Parameter Default 

Values of RAMMS ROCKFALL 
Terrain 

Category 
Example 

ME 

(Mpa) 
Cd 

River / 

Swamp 

Marsh, grassland, hydromorphic 

soil 
0.2 1000 

Topsoil Meadow, steppe 3 1.55 

Deep soil 
Unpaved mountain roads, alpine 

meadow 
4 1.8 

Forest Forested areas 5.5 1.2 
Vegetated 

scree 

Small-grained scree with good 

vegetation cover 
6 2.1 

Fine scree 
Pebbles (unvegetated), d≤5cm, 

d50≤5cm 
7 2.3 

Medium 

scree 
Unvegetated, d≤20cm, d50≤10cm 10 2.7 

Coarse scree Unvegetated, d≤50cm, d50≤30cm 15 3.5 

Large blocks Boulders / Talus 20 3.5 
Mountain 

road 
Mountainous roads 50 2 

Asphalt road Asphalted surfaces 75 2 
Bedrock Outcropping rock, cliffs 100 4 

Snow Accumulated snow 0.1 1 

 

In the RAMMS model, two pivotal parameters—ground 

strength (ME) and the drag coefficient (Cd) —significantly 

influence energy dissipation during rockfall motion. ME, 

expressed as a modulus of elasticity in units of Mpa, is a 

geotechnical parameter describing the deformation 

characteristics of the surface material. It characterizes the 

pressure required to achieve a specific strain or settlement 

within a given soil layer. A higher ME value indicates greater 

ground stiffness, resulting in shallower indentations upon 

impact and, consequently, lower energy dissipation during 

rock-ground interactions. In essence, ground stiffness 

increases proportionally with ME, with hard bedrock 

exhibiting significantly higher values than loose, 

unconsolidated soil. Complementarily, the drag coefficient Cd 

governs the magnitude of viscous resistance experienced by 

the rock during contact. A higher Cdvalue exerts a stronger 

retarding effect as the rock moves across the surface, leading 

to greater energy dissipation. This coefficient primarily 

reflects the influence of the viscoplastic properties and surface 

roughness of the terrain on the kinematic evolution of the 

rockfall. 

 

For this investigation, a systematic parameter calibration was 

performed based on the environmental characteristics of the 

unstable rock mass. The bedrock in the study area consists 

primarily of gneiss, while land-use types on the slope include 

forest and agricultural land. By integrating detailed field 

geological survey results with the material composition and 

surface features of different geomorphic units, a localized 

terrain classification scheme was established. Specifically, the 

weathered rock cliffs in the rockfall source area were 

classified as Bedrock; the areas covered by slope wash and 

residual deposits were designated as Fine scree; and the 

residential areas at the slope toe were assigned the Topsoil 

category, as illustrated in Figure 4. 

 
Figure 4: Ground type classification map and release location diagram 

To accurately reflect the grain-size distribution characteristics 

of rockfalls within the study area, five pre-established size 

classes of rockfall models were released from each designated 

release point in a quantitative ratio of 3:3:2:1:1, resulting in a 

total of 100 rockfall samples per simulation. This ratio 

configuration was meticulously designed by integrating the 

statistical grain-size distribution of historical rockfall events 

with the discontinuity cutting patterns of unstable rock masses. 

This approach ensures that the high-frequency occurrence of 

small-diameter rock blocks is adequately represented while 

simultaneously accounting for the significant hazard threats 

posed by larger-scale rock masses. 

To fully incorporate stochastic factors during the kinematic 

evolution of rockfalls, the Monte Carlo method was 

implemented across multiple simulation iterations. In each 

simulation run, the initial orientations (rotational angles) and 
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minor spatial perturbations of the release positions for each 

rock block were generated via random distributions. This 

methodology effectively replicates the random nature of rock 

mass instability encountered in actual collapse events. 

Through the iterative release of these 100 rockfall samples, a 

total of 129,000 independent rockfall trajectories were 

generated. This substantial dataset provides a robust statistical 

foundation for subsequent analysis of dynamic parameters and 

the systematic assessment of rockfall hazards. 

 

4.4 Feature Extraction and Analysis of Rockfall 

Movement 

 

Rockfall motion frequency, defined as the cumulative number 

of rockfall passages within a unit grid, serves as an essential 

metric reflecting the spatial concentration of trajectories and 

the intensity of the hazard. High-frequency zones signify a 

pronounced convergence of rockfall paths, where the terrain 

is subjected to frequent impacts and elevated disaster threat 

levels. Consequently, these areas represent critical target 

locations for the strategic deployment of protection 

engineering. 

 

The simulation results, illustrated in Figure 5, reveal a 

pronounced spatial heterogeneity in rockfall frequency, with 

cumulative values ranging from 0 to 254 passages per grid cell. 

To effectively delineate the hazard intensity across the terrain, 

these frequencies are systematically classified into five 

distinct intervals, each associated with a specific color-coded 

hazard level. Specifically, the low-frequency zone comprises 

0 to 23 passages (dark green), while the medium-low and 

medium-frequency zones are demarcated by ranges of 23 to 

63 (yellow-green) and 63 to 116 (yellow), respectively. As the 

trajectory convergence intensifies, the medium-high 

frequency zone is defined by 116 to 179 passages (orange), 

culminating in the high-frequency zone (179 to 254 passages, 

red). These high-frequency areas identify the primary 

corridors of rockfall activity and represent the most critical 

zones where the probability of impact is maximized, thereby 

providing a preliminary spatial basis for the subsequent 

optimization of protective structures. 

 
Figure 5: Spatial distribution of rockfall frequency 

 
Figure 6: Spatial distribution of rockfall bounce height 

During rockfall motion, the bounce height is defined as the 

vertical distance between the moving rock block and the slope 

surface directly beneath it. It serves as a critical kinematic 

parameter for evaluating both the energy evolution and the 

hazard intensity of rockfall events. Based on the data extracted 

from RAMMS simulations, the bounce height characteristics 

within the study area were comprehensively analyzed through 

a combination of global spatial distribution and localized 

profile assessments at the slope toe. As illustrated in the 

regional distribution map (Figure 5), the bounce height ranges 

from 0 to 24.94 m, exhibiting pronounced spatial 

heterogeneity. 

 

Generally, the high-value zones of bounce height are 

characterized by a discontinuous, patchy distribution. This 

spatial pattern is intrinsically consistent with the intermittent 

nature of rockfall kinematics, where rock blocks undergo 

successive cycles of "free fall—impact—rebound—descent." 

The magnitude of each bounce is governed by a complex 

interplay of stochastic factors, including the local micro-

topography at the impact point, the orientation of the rock 

mass, and the incident angle. Consequently, these dynamics 

manifest as significant spatial non-uniformity across the slope 

surface. 

 

To further quantify the specific threats posed to the 

transportation infrastructure at the slope toe, a representative 

longitudinal profile was established along the adjacent 

highway (Figure 6). This profile, extending approximately 

400 m, captures the variation in rockfall bounce heights at 

different positions along the vulnerable road segment. A 

specialized statistical analysis of the 1,322 valid data points 

recorded along this corridor (Figure 7) revealed that bounce 

heights range from 0.25 to 4.94 m, with a mean value of 1.18 

m and a median of 1.1 m (standard deviation = 0.50 m). The 

overall dataset exhibits a characteristically right-skewed 

distribution, indicating that while most rockfalls maintain a 

relatively low bounce height near the road, the potential for 

high-clearance impacts remains a critical factor for the design 

of passive protection systems. 
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Figure 6: Profile of rockfall bounce height 

 
Figure 7: Statistical distribution 

Rockfall velocity is a fundamental parameter that 

characterizes both the kinetic energy and the destructive 

impact potential of rock mass movements. By integrating 

velocity data derived from RAMMS numerical simulations 

with comprehensive spatial distribution and slope-toe profile 

analyses, the evolutionary characteristics of rockfall velocity 

and their subsequent implications for protection design can be 

rigorously evaluated. As illustrated in the three-dimensional 

velocity distribution map (Figure 8), magnitudes range from 0 

to 31.21 m/s, exhibiting a pronounced spatial gradient. 

 

Macroscopically, the velocity field displays a distinct spatial 

transition, characterized by a gradient from high-velocity 

regimes on the steep source cliffs to moderate speeds across 

the slope surface, and eventually decelerating to lower 

velocities at the slope toe. In contrast to the patchy and 

discrete distribution observed in the bounce height analysis, 

the high-velocity zones demonstrate greater spatial continuity 

and concentration. These velocities form ribbon-like corridors 

aligned with the primary rockfall pathways, reflecting the 

directional acceleration of rock masses driven by gravity 

along the terrain's principal fall lines. 

 

A refined statistical assessment of the 1,322 valid data points 

recorded along the highway corridor (Figure 9) indicates that 

velocities vary between 0.02 and 15.5 m/s, with a mean of 3.85 

m/s and a median of 3.09 m/s (standard deviation = 2.86 m/s). 

The overall dataset is markedly right-skewed, suggesting that 

while the majority of rockfalls reach the road at moderate 

speeds, the potential for high-velocity impacts remains a 

significant design consideration. 

 

The longitudinal velocity profile established along the 

highway alignment (Figure 10) further elucidates complex 

spatial fluctuations in impact intensity. In the western section, 

velocities exhibit intense fluctuations; the 95th percentile 

(Q95%) velocity histogram shows concentrations between 12 

and 1 m/s, with local peaks approaching 1 m/s. The vertical 

displacement between the rockfall scatter points and the 

topographic line indicates that motion in this segment is 

dominated by high-velocity bouncing, confirming that this 

section lies within a primary motion corridor characterized by 

high-energy impact intensity. 

 

While the middle section displays a moderate decline in 

velocity—with most values maintained between 8 and 15 m/s 

and a sparse distribution—the eastern section shows a 

resurgent increase in velocity. In this latter segment, velocities 

predominantly range from 10 to 20 m/s, with local maxima 

exceeding 20 m/s. The significant elevation of several red 

scatter points above the terrain line implies that rock masses 

traverse this section in a state of high-velocity flight or bounce. 

Such high-speed trajectories indicate that rockfalls possess the 

potential to bypass the roadway entirely, posing a direct threat 

to the infrastructure and the areas situated further down slope. 

 
Figure 8: Spatial distribution of rockfall velocity 

 
Figure 9: Velocity profile along the slope toe 
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Figure 10: Statistical distribution 

 
Figure 11: Spatial distribution of rockfall kinetic energy 

Rockfall kinetic energy serves as the primary determinant for 

protection engineering design, as it directly dictates the 

requisite energy-rating selection for protective structures. By 

integrating kinetic energy data derived from RAMMS 

numerical simulations with comprehensive spatial distribution 

patterns and localized slope-toe profile analyses, a 

quantitative framework is established for the selection and 

deployment of protective measures. As illustrated in the three-

dimensional spatial distribution map (Figure 11), the kinetic 

energy ranges from 0 to 10,852 kJ, exhibiting pronounced 

spatial gradients and distinct topographic channeling features. 

 

Rockfall kinetic energy serves as the primary determinant for 

protection engineering design, as it directly dictates the 

requisite energy-rating selection for protective structures. By 

integrating kinetic energy data derived from RAMMS 

numerical simulations with comprehensive spatial distribution 

patterns and localized slope-toe profile analyses, a 

quantitative framework is established for the selection and 

deployment of protective measures. As illustrated in the three-

dimensional spatial distribution map (Figure 11), the kinetic 

energy ranges from 0 to 10,852 kJ, exhibiting pronounced 

spatial gradients and distinct topographic channeling features. 

 

Macroscopically, the energy field follows a clear spatial 

gradient transition: high-energy concentrations are primarily 

situated at the source cliffs, followed by moderate-to-high 

energy diffusion across the slope, and ultimately decelerating 

to moderate-to-low energy levels at the slope toe. Compared 

to the velocity distribution, the high-energy zones are 

significantly more localized and exhibit a much broader 

numerical span. This phenomenon reflects the compounded 

effect of rock mass disparities and velocity fluctuations, 

providing a scientific rationale for implementing hierarchical 

fortification strategies across the site. 

 

The longitudinal kinetic energy profile established along the 

highway alignment (Figure 12) reveals intense spatial 

fluctuations in impact intensity. A refined statistical analysis 

of the 1,322 valid data points within the roadside corridor 

(Figure 13) indicates a kinetic energy range of 0 to 3,195.2 kJ, 

with a mean of 262.01 kJ and a median of 90.74 kJ (standard 

deviation = 421.14 kJ). The overall dataset displays a 

characteristically extreme right-skewed distribution, 

underscoring the dominance of low-to-moderate energy 

events punctuated by high-magnitude impacts. 

 

The profile analysis further highlights the significant non-

uniformity of energy distribution along the roadway. 

Specifically, the western and eastern segments are identified 

as high-energy threat zones, where the 95th percentile 

(Q_95%) kinetic energy values range between 1,000 and 

3,000 kJ. In contrast, the middle section is characterized as a 

relatively low-energy zone, with Q_95% values remaining 

below 500 kJ. This spatial divergence underscores the 

channeling characteristics of rockfall trajectories and provides 

a robust empirical basis for the sectional design and energy-

level optimization of protection systems. 

 
Figure 12: Kinetic energy profile along the slope toe 

 
Figure 13: Statistical distribution 
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To quantitatively evaluate the spatial distribution of rockfall 

hazards in the Guanmenla area, this study implemented a 

multi-factor weighted superposition method for hazard 

zonation, utilizing kinematic parameters derived from 

RAMMS numerical simulations. Based on the disaster-

causing mechanisms of rockfall events, three key 

parameters—rockfall frequency, bounce height, and kinetic 

energy—were selected as the primary hazard evaluation 

indicators. Specifically, frequency represents the probability 

of occurrence, bounce height reflects the kinematic state of the 

rock masses, and kinetic energy quantifies their destructive 

potential. Drawing upon the hazard evaluation framework of 

the Rockfall Analysis software, the weighting coefficients 

were assigned as 0.5 for frequency, 0.2 for bounce height, and 

0.3 for kinetic energy. The resulting hazard zonation is 

illustrated in Figure 14. 

 
Figure 14: Spatial zonation of rockfall hazards in the study 

area 

The results demonstrate that very high hazard zones are 

primarily concentrated across the upper and central portions 

of the cliff's western and northeastern sectors, exhibiting a 

distinct ribbon-like distribution pattern. These areas 

correspond to the primary rockfall motion corridors, 

representing core threat zones where frequency, bounce height, 

and kinetic energy simultaneously attain maximum values. 

Notably, the very high hazard zone on the western side of the 

cliff extends directly to the slope toe, forming a continuous 

high-risk conduit that poses an immediate threat to the 

underlying roadway and residential areas. Although the very 

high hazard zone on the northeastern side is relatively smaller 

in area, it exhibits similar characteristics of high frequency 

and high energy intensity. The formation of these zones is 

predominantly governed by steep topographic gradients, 

highly fragmented rock mass structures, and directional 

acceleration driven by gravity. High hazard zones are 

distributed peripherally to the very high hazard areas, 

maintaining close connectivity and displaying a fan-shaped 

outward diffusion. These zones correspond to the margins of 

the primary motion paths and secondary motion corridors; 

despite a localized reduction in certain kinematic parameters, 

the integrated hazard level remains substantial. Large-scale 

high hazard zones are present on both the western side and the 

center of the cliff, indicating a degree of trajectory divergence 

in the rockfall motion. Moderate hazard zones are extensively 

distributed across the middle and lower slopes, appearing in 

broad, sheet-like patterns. While the overall rockfall threat is 

attenuated in these regions, localized high-risk points may still 

emerge in areas characterized by significant topographic relief 

or abrupt changes in slope gradient. It is noteworthy that the 

central portion of the residential area at the slope toe falls 

within the moderate hazard zone, with houses situated near the 

eastern side of the cliff particularly exposed to significant 

rockfall risk. Finally, low hazard zones are predominantly 

located at the margins of the impact area and in regions far 

removed from the primary motion corridors. Although the 

probability of direct impact is relatively low in these zones, 

the possibility of isolated high-velocity rockfalls reaching 

these locations under extreme conditions cannot be entirely 

discounted. 

 

4.5 Verification and Evaluation of Optimization Schemes 

 

Based on the RAMMS numerical simulation results, a multi-

objective optimization model for the layout of passive flexible 

protection networks was established. Following the hazard 

zonation analysis, the threatened road segments were 

categorized into four critical protection sector (M1, M2, M3, 

M4). For each sector, the decision variables included the 

network height ℎ𝑖 ∈ [3.0,6.0] m, energy capacity 𝐶𝑖 ∈
{1500,2000,3000,4000,5000} kJ, network length 𝐿𝑖 and the 

specific placement orientation. 

 

The objective functions of the optimization model were 

formulated to maximize the interception efficiency while 

simultaneously minimizing the total economic expenditure: 

 𝑚𝑎𝑥𝑅 =
𝑁𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
× 100%  

 𝑚𝑖𝑛𝐶𝑡𝑜𝑡𝑎𝑙 = ∑  𝑛
𝑖=1 (𝐶𝑢𝑛𝑖𝑡,𝑖 ⋅ 𝐿𝑖 + 𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙,𝑖)  

Where 𝑅  denotes the interception rate, 𝑁𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑  is the 

number of successfully intercepted rockfalls, 𝑁𝑡𝑜𝑡𝑎𝑙  is the 

total number of simulated samples.  𝐶𝑡𝑜𝑡𝑎𝑙  represents the 

cumulative project cost, 𝐶𝑢𝑛𝑖𝑡  is the unit material cost per 

meter, which fluctuates between 1,200 and 2,500 RMB/m 

depending on the required energy rating. 

 

To ensure the structural integrity and functional reliability of 

the proposed mitigation measures, the optimization process 

was governed by several rigorous engineering constraints. 

Primarily, the design height of each flexible network was 

required to be no less than the 95th percentile bounce height 

of 2.04m recorded at its respective deployment location. 

Furthermore, the energy-absorption capacity of each structure 

was mandated to meet or exceed the local 95th percentile 

kinetic energy to prevent structural failure upon impact. 

Additionally, the longitudinal spacing and alignment between 

adjacent networks were meticulously configured to comply 

with the relevant technical codes and design specifications for 

rockfall protection engineering. 

 

The multi-objective optimization problem was solved using 

the NSGA-II algorithm, which achieved computational 

convergence at the 265th generation. The resulting optimal 

layout adopts a zonal cascading protection strategy, 

incorporating a total of four flexible protection networks 

strategically positioned across the high-risk corridors. This 

integrated configuration achieves a high level of disaster 
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resilience, providing a total interception rate of 98.43%. The 

overall engineering cost for the proposed scheme is estimated 

at 368,440 RMB, demonstrating an efficient balance between 

safety performance and economic investment as detailed in 

Table 4. 

Table 4: Optimized design parameters and performance 

metrics of the protection system 

Net 

ID 

Sector 

Group 

Heigh

t (m) 

Energy 
Capacity 

(kJ) 

Length 

(m) 

Sector 
Interception 

(%) 

M1 Group 1 5.0 5000 120.3 96.6 

M2 Group 1 4.9 4402 140.9  
M3 Group 2 3.6 3252 194.9 99.8 

M4 Group 2 3.8 3923 170.8  

Total     98.43 

 

The interception efficiency of the optimized scheme across the 

four designated protection sectors is illustrated in Figure 15. 

The individual interception rates for sectors M1 through M4 

were determined to be 94.6%, 71.9%, 94.3%, and 83.9%, 

respectively. These performance variations are primarily 

governed by the localized interplay of rockfall frequency, 

energy distribution, and topographic constraints within each 

sector. To achieve an optimal allocation of resources, the 

scheme deploys high-energy dense protection in the 

northwestern high-risk sectors (M1–M2), while a medium-

energy cascading strategy is implemented for the southeastern 

moderate-to-high risk sectors (M3–M4). 

 

The final configuration is organized into two distinct 

cascading protection systems. The first group (M2 → M1) 

specifically targets the primary western rockfall corridor, 

achieving a combined interception rate of 96.6% with a total 

investment of 191,030 RMB. In this system, network M2 is 

configured with a height of 5.0 m, an energy capacity of 5,000 

kJ, and a length of 120.3 m, while M1 serves as a downstream 

barrier with a height of 4.9 m, an energy capacity of 4,402 kJ, 

and a length of 140.9 m. This high-energy specification is 

necessitated by the extreme kinetic energy recorded in the 

western corridor, where the 95th percentile values reach 3,200 

kJ. 

 

The second group (M4–M3) addresses the southeastern 

secondary corridor, yielding a superior combined interception 

rate of 99.8% at a cost of 177,41 RMB. The parameters for 

M4 include a height of 3.2 m, an energy capacity of 3,362 kJ, 

and a length of 194.9 m, complemented by M3 with a height 

of 3.8 m, an energy capacity of 3,923 kJ, and a length of 170.8 

m. The significantly higher interception efficiency of this 

second group is attributed to the smaller rockfall grain sizes, 

lower kinetic energies, and more favorable topographic 

conditions characteristic of the southeastern slope. 

 

Regarding the spatial arrangement, networks M1 and M2 are 

strategically positioned within the northwestern high-risk 

zone to establish a robust defense-in-depth. Conversely, M3 

and M4 are deployed in the southeastern sector, following the 

topographic contours in a curvilinear, arched distribution. All 

four flexible networks are located within high or very high 

hazard zones, strictly adhering to the design principle of 

"prioritized protection with a sparse-to-dense upslope-

downslope gradient." This contour-aligned placement 

maximizes the effective interception area and ensures a more 

uniform distribution of impact forces across the structural 

components, thereby facilitating both construction feasibility 

and long-term maintenance. 

 
Figure 15: Layout of the optimized protection scheme 

 
Figure 16: Back-verification results in RAMMS 

To validate the predictive accuracy and engineering reliability 

of the proposed model, the optimized design parameters were 

re-integrated into the RAMMS platform for comprehensive 

back-verification. Within this simulation environment, the 

protection networks were modeled as flexible barriers 

endowed with specific energy-absorption characteristics. The 

interception outcomes were determined by the mechanical 

relationship between the rockfall’s impact kinetic energy and 

the designated energy capacity of the protective structure. The 

verification results yielded an actual interception rate of 

98.43%, demonstrating a high degree of congruence with the 

optimization framework's predicted values, with a relative 

error of less than 0.5%. 

 

A detailed statistical analysis of the penetrating rock masses 

was conducted to elucidate the limitations of the protective 

system. The findings indicate that the majority of non-

intercepted rocks (85%) belonged to the minimum size class 

(21.5 kg), while 10% and 5% were categorized into the 

second-smallest and medium size classes, respectively. 

Notably, the kinetic energy of all penetrating rocks remained 

below 200 kJ, significantly lower than the design thresholds 

of the barriers. Spatially, the trajectories of these penetrating 

masses were primarily concentrated at the lateral boundaries 

of the protection networks and within the transition zones 

between the two primary functional groups. 
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5. Conclusions 
 

Taking the Guanmenla rockfall area in Ji'an City, Jilin 

Province, as a case study, this research establishes a design 

framework for passive flexible protection network layout by 

coupling three-dimensional numerical simulation with a 

multi-objective optimization algorithm. By integrating 

RAMMS-based rockfall motion analysis with the NSGA-II 

optimization algorithm, an effective equilibrium between 

interception efficiency and engineering cost is achieved. 

Based on a 0.5 m resolution DEM and 129,000 Monte Carlo 

simulations, the statistical distribution of rockfall dynamics 

was characterized. The 95th percentile values for jump height 

and velocity along the road were determined to be 2.04 m and 

9.12 m/s, respectively, while the 95th percentile kinetic 

energy reached 3,200 kJ in the western section and ranged 

from 500 to 2,800 kJ in the eastern section. Through a multi-

factor weighted evaluation integrating frequency, jump height, 

and kinetic energy, two primary rockfall channels on the 

western and northeastern slopes were quantitatively identified, 

providing a rigorous basis for protection deployment. 

 

The developed multi-objective optimization model, which 

seeks to maximize interception rates while minimizing costs, 

reached convergence at the 265th generation using the NSGA-

II algorithm. The resulting optimal scheme consists of four 

protection networks with a total interception rate of 98.43% 

and a total engineering cost of 368,440 RMB. Specifically, 

high-energy networks (4,402–5,000 kJ) are deployed for 

intensive protection in the northwestern high-risk zone, while 

medium-energy networks (3,362–3,923 kJ) provide extended 

coverage in the southeastern medium-to-high-risk zone. Back-

verification using RAMMS demonstrates that the error 

between optimization predictions and actual simulation values 

is less than 0.5%. Compared to traditional empirical methods, 

this framework ensures a more objective selection of 

protection measures, significantly reducing costs while 

maintaining a high level of interception efficiency. 
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