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Abstract: Landslides pose a persistent threat in the geologically complex and ecologically fragile mountainous terrain of Yanbian
Prefecture, Northeast China. To address this challenge, we propose an innovative susceptibility assessment framework that integrates
ensemble machine learning with SHapley Additive exPlanations for interpretable prediction. Eleven critical environmental and
anthropogenic factors—altitude, slope, aspect, curvature, lithology, land use, rainfall, TWI, NDVI, and distances to rivers and
roads—were selected to build a comprehensive indicator system based on hydrological watershed units. A suite of advanced machine
learning algorithms, including Random Forest, XGBoost, LightGBM, CatBoost, and AdaBoost, were employed and further optimized
using ensemble strategies such as Stacking, Bagging, and Voting. Among them, the Stacking ensemble demonstrated superior predictive
performance with the highest AUC value. More importantly, the integration of SHAP allowed for a transparent and quantitative
interpretation of feature contributions, revealing that distance to roads, rainfall, and NDVI are the dominant drivers of landslide
susceptibility in the region. This study not only advances the precision and interpretability of disaster prediction models but also offers

practical insights for regional hazard mitigation, land-use planning, and sustainable ecological management.

Keywords: Landslide susceptibility, Ensemble learning, Machine learning, Watershed unit.

1. Introduction

Landslide is a common geological hazard in mountainous
areas, primarily triggered by factors such as precipitation,
glacier meltwater, or earthquakes (He et al., 2022;
Rickenmann et al., 2006). Its powerful impact and
sedimentation capabilities often cause significant harm to
production and daily life in the areas it flows through and
accumulates (Iversion 1997; Jakob et al, 2013). For
policymakers, mitigating landslide risks is challenging due to
the uncertainty in predicting when and where they occur.
Landslide susceptibility assessment is an important tool for
identifying areas prone to landslides (Corominas et al., 2014;
Cui et al., 2013; Shen et al., 2018). In recent years, thanks to
significant scientific advances in physical/process-based
models (Guzzetti 2003; Han et al., 2017) and statistical
models (Anbalagan and Singh 1996; Liu 2003; Liu et al.,
2020), the field has made significant breakthroughs, and
several models and methods have been recommended for
landslide susceptibility assessment. Physical/process-based
models typically use random flow routing models (Scheild
and Rickenmann 2011) or Navier-Stokes (N-S) equation
based models (Pellegrino et al., 2015) to simulate the depth
and velocity of landslides, thereby addressing the challenges
of analyzing and predicting hazards. However,
physical/process-based models depend on extensive field data,
and for large-scale applications, the computational and
economic costs required to obtain reliable results make their
widespread use challenging.

In contrast, statistical models provide a more economical and
less computationally demanding approach for predicting the
spatial distribution of landslides (Di Napoli et al., 2020;
Huang et al., 2021b). By assuming that factors responsible for
past landslide occurrences will repeatedly trigger future
events—i.e., the past is the key to the future—statistical

models such as bivariate statistical analysis (Constantin et al.,
2011), logistic regression (Tsangaratos and Ilia 2016),
multiple regression (Felicisimo et al., 2013), and weights of
evidence (Tsangaratos et al., 2017) have been widely regarded
as suitable tools for assessing landslide susceptibility on a
regional scale. In recent years, machine learning algorithms
(Support Vector Machines (Pham et al., 2018), Artificial
Neural Networks (Ermini et al.,, 2005), Decision Trees
(Shaikhina et al., 2019), and Random Forests (Rigatti 2017)
e.g.) have gained considerable attention within statistical
methods. A growing number of researchers have obtained
high-accuracy classifiers by employing these algorithms to
capture the nonlinear relationships between landslide
occurrences and their influencing factors. However, single
models inherently involve certain uncertainties (Merghadi et
al., 2018). Many scholars have therefore proposed minimizing
these uncertainties by combining the predictive outputs of
multiple algorithms (Chen et al., 2017a; Chen et al., 2017b;
Dou et al., 2020). Ensemble learning algorithms have made
substantial contributions to mitigating uncertainty and
improving predictive accuracy. Inspired by the statistical
regularities of random phenomena, these ensemble methods
can vyield superior predictions compared to individual
classifiers (Zhang et al., 2022). Consequently, as highlighted
by Dou et al (Dou et al., 2020), it is essential to explore new
ensemble methods for landslide susceptibility mapping.

In addition, most susceptibility studies, both domestically and
internationally, focus on optimizing machine learning models
to achieve higher accuracy, with relatively little attention paid
to the internal decision-making mechanisms of these models.
Landslide formation is highly complex, and the regional
characteristics of wvarious influencing factors have a
significant impact on landslide distribution (Hutter et al., 1994;
Zeng et al., 2024). As highlighted in the review by Dikshit et
al. (Dikshit et al., 2021), a lack of model interpretability is one
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of the primary challenges currently faced when applying
artificial intelligence in the geohazard domain. Previous
research has often employed methods such as Pearson’s
correlation coefficient, the Gini index, and Geo Detector to
interpret model outputs and the importance of influencing
factors (Chen et al., 2018). For example, Lin et al. (Lin et al.,
2021), examining a typical mountainous environment —
Fujian Province—utilized an information-value model (which
measures the information gain of geological hazard points
under different factor classes) and the Geo Detector approach
to systematically assess the regional distribution of geological
hazards, as well as quantitatively analyze the key triggering
factors and their interaction effects. While these methods
offer insights at a global level, they lack the capacity to
elucidate the specific factors driving predictions at the local or
individual level. SHAP is an explainable Al technique that has
recently attracted substantial attention (Marcilio and Eler
2020). The method offers a variety of visualizations that aid in
clarifying the interdependencies among variables with respect
to model outcomes (Zhang et al., 2023). This approach has
been widely applied across multiple domains, including
medical diagnostics and judicial decision-making assistance
(Mokhtari et al., 2019; Wang et al., 2024). Pradhan et al
(Pradhan et al., 2023). were the first to introduce SHAP into
susceptibility research, illustrating and quantifying the
importance and interactions of different influencing factors in
a model. Their findings demonstrate that machine learning
models combined with the SHAP method achieve superior
decision-making performance and interpretability.

The primary contribution of this study lies in the application
of ensemble learning algorithms and an interpretable model
(SHAP) to landslide susceptibility modeling. The main
objective is to quantitatively evaluate the influence of
GIS-based ensemble models (Stacking, Boosting, and Voting)
on landslide susceptibility in Yanbian Prefecture, China, and
to validate and compare the performance of different models
using performance metrics (the Area Under the Receiver
Operating Characteristic Curve, AUC). Subsequently, SHAP
is employed to elucidate the decision-making processes of
these ensemble models, thereby promoting the effective use
of such models in landslide hazard management and
supporting planning and disaster reduction practices in the
study region.

95°0'0"E

2. Study Area and Data Sources
2.1 Study Area

Yanbian Korean Autonomous Prefecture (hereafter referred
to as Yanbian Prefecture) is located in eastern Jilin Province,
China, spanning from 41°59'47" N to 44°30'42" N and
127°27'43" E to 131°18'33" E (Figure 1). There are several
reasons for choosing Yanbian Prefecture as the study area.
Firstly, Yanbian Prefecture represents a typical mountainous
environment, with mountain areas occupying approximately
54.8% of the total area. The overall terrain exhibits
considerable elevation differences and is characterized by
three geomorphological gradients—mountains, hills, and
basins—that facilitate landslide evolution. Secondly, the
regional ecosystem plays a pivotal role within the ecological
network of Northeast Asia, and its ecological conditions are
closely tied to both the socioeconomic development and
ecological security of Jilin Province. Finally, extensive
preliminary investigations on landslide hazards have been
conducted in Yanbian Prefecture, yielding a rich dataset of
landslide occurrences and associated influencing factors, thus
establishing a robust spatial data foundation for this study.

The study area encompasses approximately 4,330 km?, with
elevations ranging from 3 m to 2,659 m. The terrain is
generally higher in the west and lower in the east, sloping
from the southwest, northwest, and northeast toward the
southeast. In addition, it falls under a temperate monsoon
climate, with an annual mean temperature of 4.8°C and
average yearly precipitation of about 640 mm—primarily
concentrated between June and August. Precipitation is
unevenly distributed, with the Changbai Mountain area
receiving the highest rainfall in the region. As of late 2023 to
early 2024, the permanent population is recorded at 1.8949
million. Granite constitutes the predominant lithology in this
region, followed by basalt and shale. Situated in the heart of
Northeast Asia, Yanbian Prefecture plays a key role in major
economic development strategies, such as the Belt and Road
Initiative (BRI), the Revitalization of Northeast China, and
the 'Changchun-Jilin—-Tumen' Pilot Development and
Opening-up Zone. Intensified economic activity and tourism
have accelerated anthropogenic landscape modification,
disrupting local ecosystems and increasing landslide
susceptibility.
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Figure 1: Location map and landslide inventory of Yanbian Prefecture

Volume 7 Issue 11, 2025
www.bryanhousepub.com



Journal of Progress in Civil Engineering

ISSN: 2322-0856

2.2 Data Sources

The main data sources employed in this study include: (1) 30
m-resolution Copernicus DEM used to extract various
topographic, geomorphological, and hydrological factors; (2)
10 m-resolution Sentinel-2A imagery for deriving land cover
and NDVI; (3) rainfall records obtained from meteorological
stations throughout Yanbian Prefecture; (4) geological maps
provided by the Jilin Provincial Geological Bureau; and (5)
road network and river data acquired from the Jilin Provincial
Department of Transportation and the Jilin Provincial
Department of Water Resources, respectively. Table 1 shows
the data type and source. These data are used to generate
multi-source spatial data that can be used for spatial
superposition and model operations after unified in the WGS
1984 projected coordinate system and formatted as unified
30mx30m resolution raster data.

The landslide distribution data for Yanbian Prefecture
primarily derive from the Jilin Province Geological Hazard
Risk Assessment Survey and the Yanbian Prefecture
Monitoring Project, supplemented by data compilation,
remote sensing imagery, and field investigations. A total of
313 landslide sites were identified.

Tabel 1: Data and data sources

Data Sources Scale
Landslide Geological disaster _r15k survey in Jilin

Province

DEM Copernicus DEM 30mx30m

Remote Sentinel-2A 10mx10m

Sensing Image

Rainfall Yanbian Prefectu?e meteorological 30mx30m
stations

Geological map Jilin Provincial Bureau of Geology 1: 500, 000

Road network Jilin Provincial Transportation Bureau 1: 100, 000

River network Jilin Provincial Water Resources Bureau 1: 100, 000

2.3 Selection of Landslide Influencing Factors

The selection of influencing factors forms the foundation of
susceptibility assessment, as it determines the information
that can be incorporated into the modeling process. Because
landslide formation is highly complex, there is currently no
consensus among scientists on all potential factors. Drawing
upon the approach of Huang et al, this study selected factors
that are both comprehensive and physically meaningful.
Specifically, four categories encompassing eleven indicators
were chosen (Figure 2). These four categories include: (1)
Topographic factors—elevation, slope, aspect, and curvature;
(2) Hydrological factors—annual average rainfall, stream
power index (SPI), topographic wetness index (TWI), and
distance to rivers; (3) Land cover factors—Iland use, NDVI,
and distance to roads; (4) Lithological factors. Table 2
describes the relationship between various factors and
landslide.

Elevation, Slope, Aspect, Curvature, TWI, and SPI were
derived and calculated at the same 30mx30m resolution using
the Copernicus DEM. Lithology data were obtained from
geological maps (1:50,000 scale). For the Distances to roads
and rivers, the nearest distance from landslide disaster points
to the nearby line objects was computed. Rainfall data
collected from meteorological stations were interpolated into
raster thematic maps using the inverse distance weighting
(IDW) method.

Table 2: Relationship Between Various Factors and

Landslide.
Influencing .
Factors Description
Elevated terrain often receives intense precipitation and
Elevation snowmelt, increasing soil saturation and promoting landslide

initiation, particularly on fractured or weathered slopes.
Steep slopes are inherently less stable due to enhanced

1 oo . .
Slope gravitational forces acting on soil and rock masses.
Aspect regulates solar radiation exposure, shaping
Aspect microclimates through variations in soil moisture and
temperature.
Curvature affects water flow convergence, slope erosion, and
Curvature . o
soil stability.
Land use directly affects vegetation protection, hydrological
Landuse o
processes, and surface stability.
TWI An indicator of surface water accumulation potential.
Lithology Influencing t'h.e supply of slope' materials, mechanical
stability, and hydrological processes.
NDVI Reflecting vegetation coverage.
Annual S . . .
Precipitation erodes surface materials, while rainwater
average . . R
. infiltration erodes the slope interior.
Rainfall
Distance to ~ Blasting and excavation during road construction undermine
Road slope base stability.
Distance to . . .
River Areas near rivers are subject to stronger water erosion.

D35 T0KM

Figure 2: Influencing Factors: (a) Elevation, (b) Slope, (c)
Aspect, (d) Curvature, (e) Lithology, (f) Landuse, (g) Rainfall,
(h) TWI, (i) NDVI, (j) Distance to Rivers, (k) Distance to
Roads

3. Methodology
3.1 Evaluation Unit
In susceptibility studies, commonly used evaluation units

include grid units, slope units, and watershed units (Huang et
al., 2021a; Lv et al., 2023; Qin et al.,, 2019). As the
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fundamental carriers of all information in the susceptibility
evaluation process, selecting appropriate evaluation units is a
crucial prerequisite for ensuring the quality of subsequent
research. Among these, grid units, usually based on DEM data,
divide the study area into regular grids and are the most
commonly used units in landslide susceptibility evaluation.
However, the regularity of grid units may not effectively
reflect certain topographic features, especially in complex
mountainous and canyon areas (Alvioli et al., 2016). Slope
units, which are geomorphologically homogeneous units
based on terrain curvature and watershed boundaries, are
more suitable for analyzing the control of local topography
(such as slope and curvature) on landslide initiation. However,
they may fragment the complete path of landslide from the
source area to the flow =zone, providing a weaker
representation of hydrological connectivity. In contrast,
watershed units, as the fundamental units for landslide events,
naturally match the entire process of landslide from source to
flow to accumulation, making them more suitable for
landslide susceptibility evaluation from a hydrological
analysis perspective (Qin et al., 2019).

In this study, the ArcGIS Pro hydrological analysis tools were
used to extract watershed units based on 30m resolution DEM
data for Yanbian Prefecture. First, the DEM data was
preprocessed with sink filling, and the ArcSWAT model with
a multi-directional flow algorithm and the “burn-in” method
was applied to enhance the accuracy of river network
extraction. Then, river network nodes were extracted using
watershed thresholds of 5 km? and 10 km?, respectively, to
create sub-watersheds, which were compared with remote
sensing images. The results showed that the watershed units
extracted using the 5 km? threshold performed better for
Yanbian Prefecture. Finally, a total of 35,505 watershed units
were extracted in Yanbian Prefecture, among which 313
historical landslide events were located in 297 watershed units
as positive samples. An equal number 297 of non-landslide
watershed units were randomly selected as negative samples.
Following previous work (Tian et al., 2025), the dataset was
divided into training and validation sets in a 7:3 ratio.

3.2 Ensemble Learning Algorithm
3.2.1 Bagging

Bagging is an ensemble learning method proposed by
Breiman (Breiman 1996), which aims to improve the stability
and accuracy of predictions by reducing the variance of the
model. For a given training set D=

{(x1,31), (X2, ¥2), -, (xy, yn)}, The process of the Bagging
algorithm can be represented by the following steps:

1) From the original training dataset D, Bootstrap sampling is
applied to randomly select N samples, generating K subsets
Dy, (each subset has a size of N).

2) For each subset Dy, train a base classifier f (x)

fi.(x) = Model trained on Dy, )

3) For a new input sample x, each base classifier makes a
prediction f (x). The final prediction result is obtained by
voting or averaging:

For classification problems (Hard Voting):

y = argmax Tiey 1(fi(x) = ) )

3.2.2 Stacking

Stacking is a layered ensemble algorithm approach aimed at
improving modeling performance by combining different
algorithms such as CART, MARS, and Lasso into a learner, as
proposed by Wolpert (Kardani et al., 2021; Wolpert 1992).
Typically, Stacking involves two levels of learners. In level 0,
various ML algorithms are combined to generate a
meta-dataset from the original training set. Then, in level 1,
the meta-dataset is used to train a meta-learner, which
ultimately produces the final result. Figure 3 provides a
simple flowchart of the Stacking algorithm. Compared to
Bagging, Stacking enhances the predictive power of
classifiers. This ensemble method has proven to be highly
effective in various fields, including remote sensing,
computer science, and finance.

The Stacking method integrates multiple base learners
through a meta-learner, making the choice of the meta-learner
crucial. Generally, to prevent overfitting, the structure of the
meta-learner should be as simple as possible. In this study,
logistic regression (LR) (Su et al., 2012) is used as the
meta-learner.

Layer 0

Random

Forest

Logistic Fina

Result Regression Result

Layer 1

Figure 3: Flowchart of the Stacking algorithm
3.2.3 Voting

The characteristic of the voting algorithm is its simple
structure (Parhami 1994). It determines the final classification
result by aggregating the predictions from multiple classifiers
through voting. In binary classification problems, Soft Voting
is typically used. Assume we have N base classifiers, and
each classifier outputs a predicted probability for each class.
For each sample x, assume there are C classes (labels).

For each base classifier i, the predicted probability for class cc
is P(c | x)®. Assuming we use the average probability, the
final predicted probability for class c is:

P(clx) =<3, P(c | 0)® (3)
where P(c | x)® represents the predicted probability from
classifier i that sample x belongs to class c¢. P(c|x)
represents the average predicted probability for class ¢ across
all base classifiers.

The final class prediction y will be the class with the highest
probability:

y =argmax P(c | x)
c

4)
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3.3 Implementation Details

Base Model Selection. The following principles should be
followed when generating a multi-algorithm ensemble model
(Sagi and Rokach 2018): First, in order for the ensemble
method to leverage the advantages of various algorithms, the
base learners should be as diverse as possible; Secondly, in
order to not affect the accuracy of the final model, the
algorithms need to have high predictive performance. Based
on the above principles, this paper selects five ML algorithms
(Including Random Forest, XGBoost, LightGBM, CatBoost,
and AdaBoost.). Their structures and learning approaches
differ, with some focusing on the rules for node splitting
(decision tree series), while others emphasize weighted
combination and boosting (boosting series). This diversity
helps minimize errors caused by algorithm instability.

Numerical processing during sampling. During the training
process of base models, different features often have different
scales. If the data is not preprocessed, some models may fail
to exhibit their true predictive performance. Therefore, we
apply normalization to the data before model training. The
normalization formula is as follows:

X—Xmin

= o 5)

Xnorm
Xmax—Xmin

Where X is the original data, X,,;, is the minimum value in
the data, X4, 1S the maximum value in the data, X, is the
normalized data.

Model related settings. In a multi-algorithm ensemble,
selecting the appropriate combination of base learners is a
challenging task. As the number of base learners increases,
the number of possible combinations grows exponentially,
making it impractical to manually search for these
combinations. For the combination of base learners, there are
generally two strategies: one is algorithms like (ABC)
(Karaboga 2010), which aim to exchange space for time by
consuming more resources to reduce time. However, this
algorithm is prone to getting stuck in local optima, meaning it
does not necessarily find the optimal combination. The other
strategy is to exchange time for space, which aims to consume
more time in order to achieve better results. In this study, due
to the use of a small sample dataset for rapid training, a grid
search method is employed to determine the optimal
combination of base learners. In this process, the
multi-algorithm ensemble serves as the model to be optimized,
and the base learners are treated as discrete parameters. The
grid is divided with a step size of 1, and all parameters are
traversed.

Model Accuracy. To perform a performance comparison, we
considered statistical metrics such as Accuracy, Precision,
Cohen's kappa, and F1-score (Yao et al., 2022), as shown in
Formula 6.

TP+TN
Accuracy = —,
TP+FP+TN+FN
2TP
FI — e =———
score 2TP+FP+FN’ ©)
Po—P,
kappa = —°—e
pp 1-P,

Where TP, TN, FP and FN represent true positive, true
negative, false positive, and false negative, respectively; P, is
the observed agreement proportion; P, is the expected

agreement proportion. Additionally, we also calculated the
AUC (Area Under the Receiver Operating Characteristic
Curve).

3.4 SHAP

Traditional models (such as linear regression, decision trees,
etc.) are relatively simple and easy to interpret. However, with
the development of machine learning technology, more and
more complex models have started to replace these traditional
methods (Zhang et al., 2023). In particularly, deep learning
and ensemble learning methods make decisions through
multiple layers and nonlinear relationships, which allow them
to achieve better performance on many tasks than traditional
models. However, this complexity has significantly reduced
the interpretability of the models, making it difficult for data
scientists to understand how these models reason and make
predictions. The design goal of SHAP is to address the
above-mentioned issues (Lundberg 2017). It introduces
Shapley values, a concept from game theory used to fairly
allocate the rewards in a cooperative game. SHAP uses
Shapley values to assign an exact contribution value to each
feature, which represents the impact of that feature on the
final prediction result.

The Shapley value is typically calculated based on Formula 7,
which computes the importance of a feature by calculating its
marginal contribution across all possible permutations of
features.

di(f) = Xsem@@ fEU{D -] )

Where ¢;(f) is the Shapley value for feature i, representing
the contribution of feature i to the prediction. N is the set of
all features. S is a subset of features from N excluding i. f(S)
is the model's prediction using the subset of features S.

ISHNI-Isi-1: ¢
IN|!

4. Results
4.1 Model Performance and Evaluation

The landslide inventory and its associated influencing factors
were partitioned into training and testing sets and
subsequently imported into the Python environment. The
model construction process is illustrated in Figure 4 To reduce
uncertainties during the training and testing phases, this study
employed the Particle Swarm Optimization (PSO) method to
provide hyperparameters for the base classifier. PSO is a
swarm intelligence—based optimization algorithm that
simulates the collective behavior of social animals (flocks of
birds, schools of fish e.g.), leveraging information sharing
among individuals in the population to seek an optimal
solution. By setting the gradient descent objective function to
1-AUC, the loss function was continuously minimized until
convergence. As the number of iterations increased, the loss
value gradually declined and ultimately reached its minimum,
indicating a satisfactory training process.

Subsequently, we used the area under the ROC curve (AUC)
as the primary metric to evaluate predictive and generalization
capabilities. In addition, Cohen’s Kappa (Kappa) and overall
accuracy (ACC) were employed as supplementary quality
indicators to further assess overall performance (Table 5). In
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general, AUC values are interpreted as follows: excellent
(0.9-1.0), very good (0.8-0.9), good (0.7-0.8), fair (0.6-0.7),
and poor (0.5-0.6). The Kappa coefficient indicates the
strength of agreement in the following ranges: almost perfect
(0.8-1.0), substantial (0.6—0.8), moderate (0.4-0.6), fair (0.2—
0.4), slight (0-0.2), and poor (<0). ACC, expressed in decimal
form, represents the proportion of landslide occurrences and
non-occurrences that are correctly classified, with values
ranging from 0 to 1. The final hyperparameter configurations
and performance metrics are presented in Table 4.

Figure 4 illustrates the overall performance of the base and

ensemble models for landslide susceptibility, as measured by
the area under the ROC curve (AUC). The results indicate that
the Stacking model achieves the highest AUC value (0.957),
followed by the Bagging model (0.936). Among the base
models, the overall performance is ranked as follows:
CatBoost > XGBoost > Random Forest > LightGBM >
AdaBoost. Considering these AUC values, it is evident that all
models achieved favorable results, with the stacking model
based on these tree-based models emerging as the most
influential ensemble approach by enhancing the predictive
performance of the homogeneous models.

Table 4: The parameter sets used for each model, along with performance metrics (AUC — area under the ROC curve, ACC —
Accuracy, and Kappa — Cohen’s kappa).

Model Hyper-parameters AUC ACC Kappa F1
n_estimators=160
RF min_samples_split=7 0.909 0.82 0.79 0.85
min samples leaf=4
max depth=13
colsample bytree=0.8
Xgboost max_depth=3 0.91 0.86 0.72 0.88
n estimators=100 ' ’ ' '
subsample=0.9
subsample=0.8
LightGBM n estimators=100 0.892 0.81 0.63 0.86
max_depth=10
num_leaves=31
base estimator=DT
AdaBoost base estimator max_depth=4 0.872 0.84 0.67 0.8
n_estimators=100
learning rate=0.05
CatBoost iterations=300 0.923 0.88 0.77 0.89
depth=8
Stacking / 0.957 0.85 0.78 0.86
base estimator=DT
Bagging base estimator max_depth=4 0.936 0.87 0.74 0.85
n_estimators=100
Voting / 0.901 0.81 0.62 0.86
1.0 e
0.8 P
06 -
.E
& 0.4 4 Stacking AUC = 0.957
Bagging AUC = 0.936
Voting AUC = 0.901
XGBoost AUC =0.910
021 LightGBM AUC = 0.892
AdaBoost AUC = 0.872
CatBoost AUC = 0.923
0.0 4 Random Forest AUC = 0.909

0.0 02 0.4

0.6 0.8 1.0

1 - Specificity

Figure 4: AUC results of the models using validating dataset

4.2 Landslide Susceptibility Maps

To further analyze the predictive performance of the ensemble
algorithms, the trained models (Stacking, Bagging, and
Voting) were applied to the study area. Each watershed unit
was assigned a landslide occurrence probability, which was
then imported into a GIS environment. The natural breaks
method classified susceptibility into five categories: very low,

low, medium, high, and very high. The susceptibility zoning
map and corresponding area percentages are presented in
Figure 5 As shown in the figure, the generated susceptibility
zones successfully identified areas corresponding to early
landslide events (the very high and high susceptibility zones),
and the spatial distributions of the results from the three
models were similar, indicating that all three models
effectively reflect the development characteristics and spatial
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trends of geological hazards in the study area.

Based on the area percentages of the three ensemble models,
landslide susceptibility in the study area exhibits distinct
spatial distribution differences. Very low and low
susceptibility zones account for approximately 66% of the
total area, with the very low susceptibility zones being the
most widely distributed and generally forming contiguous
patches. In contrast, the high and very high susceptibility
zones are concentrated in the central and western parts,
forming linear clusters and accounting for about 22% of the
total area. This region is critical for landslide hazard
prevention and management, warranting enhanced
monitoring.
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Shapley Additive Explanations (SHAP) algorithm to
quantitatively evaluate how each factor contributes to the
model’s predictions. The main calculation procedure is as
follows: by considering all possible combinations of
influencing factors in the samples, we compute the probability
of landslide occurrence with and without each factor. The
larger the absolute value of the resulting Shapley value, the
more important the factor. Figure 6 presents the ranking of
influencing factors in the study area and the SHAP summary
plot. In the blue bar chart, the factors are ordered based on the
absolute mean Shapley values. It can be observed that
distance to roads, rainfall, and NDVI exert the greatest
influence on landslide occurrence in this region.
Consequently, in geological hazard risk assessment and
management, these factors should receive heightened
attention, and targeted prevention and mitigation measures
should be implemented. In contrast, factors such as TWI,
lithology, and aspect show no significant impact on landslide
occurrence here. The violin plot shows that samples with
lower distance values (blue group) are mostly located to the
right of the zero line. This suggests that closer proximity to
roads is associated with higher predicted landslide
susceptibility. To visually illustrate how variations in the
values of key factors affect landslide susceptibility,
single-factor dependence plots for the top three factors are
provided. This approach enhances the model’s transparency
and interpretability (Figure 7).
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When the distance to roads is less than 738 m, it promotes
landslide occurrence, and the closer the distance, the stronger
the promoting effect becomes (Figure 7a). In the study area,
most of the extremely high and high landslide susceptibility
zones are located near roads. On the one hand, road

construction often entails the removal of large swathes of
vegetation and topsoil, potentially leading to exposed spoil
heaps or waste disposal sites. If protective measures are
inadequate, these areas are prone to sediment scouring during
periods of heavy rainfall or snowmelt. Once the eroded
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materials enter slopes or gullies, they can evolve into
landslide initiation sources. On the other hand, the apparent
high importance of “distance to roads” may be partially
attributed to limitations in hazard investigations. Although we
supplemented the historical landslide data with remote
sensing imagery, potential biases in field surveys cannot be
entirely eliminated. Overall, the closer a site is to roads, the
more pronounced the impacts of construction, drainage, and
vegetation destruction become, leading to a generally higher
risk of landslides and related geological hazards. Therefore, in
engineering practice, it is necessary to plan and design roads
scientifically to minimize disturbances to the geological
environment caused by road construction. Simultaneously,
strengthening monitoring and protective measures for key
road-adjacent areas, especially those with steep slopes and
concentrated drainage, is essential for effectively reducing
both the likelihood of landslide occurrences and the
associated losses.

When the multi-year average rainfall is below 625 mm, it
strongly promotes landslide occurrence, after which this
promoting effect weakens (Figure 7b). The occurrence of
landslides depends on the gradual accumulation of loose
materials within a specific area, reaching a certain thickness
and scale. When rainfall is moderate, it both facilitates rock
weathering and soil fragmentation—generating loose
materials—and provides a relatively stable environment that
allows these materials to accumulate in gullies or at the foot of
slopes, forming potential landslide source areas. Under such
conditions, once locally accumulated materials encounter a
triggering event (short-term heavy rainfall e.g.), they are
likely to become unstable and induce landslides. However,
when rainfall is excessive, the situation changes dramatically.
Prolonged, intense rainfall continuously scours the slopes,
carrying away or dispersing loose materials over a wider area
before they have a chance to sufficiently accumulate; as a
result, forming a concentrated source locally becomes
difficult. This continual scouring not only disrupts the
material-accumulation process but also “dilutes” or even
directly removes potential source materials that might
otherwise build up. Consequently, while increases in rainfall
up to a certain point can facilitate the formation of loose
material, excessive rainfall instead impedes its incremental
accumulation and thus inhibits landslide occurrence
(Anderson and Sitar 1995; Crosta and Frattini 2008).

Figure 7c illustrates the intrinsic relationship between
vegetation coverage and landslide occurrence. As an
important indicator of surface vegetation quality, NDVI is
significantly negatively correlated with landslide risk. In areas
with low NDVI values (< 0.4), vegetation degradation reduces
both soil water retention capacity and shear strength, making
these regions more susceptible to landslides under heavy
rainfall and human engineering activities. In contrast, areas
with high NDVI benefit from enhanced friction angle and
cohesion provided by plant root systems, thereby forming an
effective soil and water conservation barrier (Zhao et al.,
2020).

5.2 Ensemble
Susceptibility

Learning Applied to Landslide

Accurate and timely mapping of landslide susceptibility can

significantly inform the spatial distribution of landslide risk,
thereby assisting government policy-making and enhancing
disaster management capabilities. A comprehensive analysis
of the susceptibility zoning map and landslide survey results
in the study area reveals consistency between the two;
however, the results obtained from different methods exhibit
some differences. We found that ensemble learning models
generally outperform individual machine learning models due
to their significant advantages in reducing variance and bias,
as well as enhancing model robustness and generalization
capability (Dietterich 2002; Dong et al., 2020). Nevertheless,
our validation results indicate that ensemble learning does not
always guarantee favorable outcomes. In many susceptibility
studies, the distinct characteristics of various machine
learning models mean that different models may be applicable
to different regions, with multiple models often being suitable
for the study area. Ensemble learning, as a framework strategy,
can transform weaker classifiers into robust models tailored to
specific problems. Specifically, Stacking exploits the
predictive features of different models and automatically
learns optimal fusion weights via a meta-learner (Pavlyshenko
2018); Bagging focuses on reducing variance through random
sampling and voting/averaging of results (Quinlan 1996); and
Voting is the simplest and most easily implemented
post-fusion method (Parhami 1994).

Yanbian Prefecture lies within a geologically active and
topographically rugged mountainous region, where landslides
occur frequently and pose serious threats to both human safety
and ecological stability. In this context, developing
science-based disaster prevention strategies is an urgent
priority. By enabling both predictive accuracy and
interpretable insights into physical drivers, this study offers a
robust framework for region-specific risk management.

Based on the findings,
recommendations:

we propose the following

(1) Targeted risk zoning — High-susceptibility areas should
be delineated based on susceptibility mapping and dominant
triggering factors. Differentiated land-use planning that
balances  ecological protection with infrastructure
development can reduce disaster risks associated with human
disturbances.

(2) Enhanced community resilience — In areas of high and
very high susceptibility, emergency shelter networks should
be expanded, regular preparedness training established, and
public awareness strengthened through education campaigns
and drills to improve self- and mutual-aid capabilities.

(3) Intelligent early warning systems — A dynamic,
high-resolution monitoring framework should be developed
by integrating UAV-based inspections, real-time remote
sensing, big data analytics, and machine learning. This would
enhance both the spatial accuracy and timeliness of landslide
forecasting.

5.3 Limitations and Outlook
While the ensemble models demonstrated strong predictive

skill and interpretability, several limitations remain. The
landslide inventory, although enhanced with remote sensing,

Volume 7 Issue 11, 2025
www.bryanhousepub.com

60



Journal of Progress in Civil Engineering

ISSN: 2322-0856

may underrepresent events in inaccessible terrain or
underreported periods. Key dynamic triggers—such as
near-real-time rainfall intensity, antecedent soil moisture, and
anthropogenic disturbances—were unavailable and thus
excluded, potentially limiting the temporal responsiveness of
the model. Moreover, SHAP-based interpretation, while
insightful, adds computational overhead as model complexity
scales.

Future work should integrate high-temporal-resolution
meteorological and hydrological data to capture transient
triggering  conditions. Hybrid approaches combining
data-driven models with physically based process simulations
may improve early warning accuracy. Finally, testing the
framework across varied topographies and tectonic settings
will be crucial to assess its robustness and transferability for
broader hazard mitigation strategies.

6. Conclusion

This study combines ensemble learning with the SHAP
method, which not only enhances the accuracy of landslide
susceptibility prediction but also interprets the results of the
Stacking model by analyzing both global and local
interdependencies. The main conclusions are as follows:

(1) To address the uncertainty inherent in a single model, this
study employs multiple base models and integrates them
using methods such as Stacking, Bagging, and Voting.
Among these, Stacking demonstrated the best performance
due to its higher prediction accuracy.

(2) The SHAP algorithm was employed to interpret the
Stacking model, revealing the contributions of various
influencing factors to landslide prediction. The results
indicate that road proximity, rainfall, and NDVI are the
primary factors affecting landslide hazards in Yanbian
Prefecture.

(3) Landslide hazards in Yanbian Prefecture generally exhibit
a spatial pattern of being higher in the west and lower in the
east, with distinct band-like and spatial clustering
characteristics. Extremely high and high susceptibility areas
are mainly concentrated in the western and central regions,
whereas low susceptibility areas are primarily distributed in
the eastern region.
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