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Abstract: Landslides pose a persistent threat in the geologically complex and ecologically fragile mountainous terrain of Yanbian 

Prefecture, Northeast China. To address this challenge, we propose an innovative susceptibility assessment framework that integrates 

ensemble machine learning with SHapley Additive exPlanations for interpretable prediction. Eleven critical environmental and 

anthropogenic factors—altitude, slope, aspect, curvature, lithology, land use, rainfall, TWI, NDVI, and distances to rivers and 

roads—were selected to build a comprehensive indicator system based on hydrological watershed units. A suite of advanced machine 

learning algorithms, including Random Forest, XGBoost, LightGBM, CatBoost, and AdaBoost, were employed and further optimized 

using ensemble strategies such as Stacking, Bagging, and Voting. Among them, the Stacking ensemble demonstrated superior predictive 

performance with the highest AUC value. More importantly, the integration of SHAP allowed for a transparent and quantitative 

interpretation of feature contributions, revealing that distance to roads, rainfall, and NDVI are the dominant drivers of landslide 

susceptibility in the region. This study not only advances the precision and interpretability of disaster prediction models but also offers 

practical insights for regional hazard mitigation, land-use planning, and sustainable ecological management. 
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1. Introduction 
 

Landslide is a common geological hazard in mountainous 

areas, primarily triggered by factors such as precipitation, 

glacier meltwater, or earthquakes (He et al., 2022; 

Rickenmann et al., 2006). Its powerful impact and 

sedimentation capabilities often cause significant harm to 

production and daily life in the areas it flows through and 

accumulates (Iversion 1997; Jakob et al., 2013). For 

policymakers, mitigating landslide risks is challenging due to 

the uncertainty in predicting when and where they occur. 

Landslide susceptibility assessment is an important tool for 

identifying areas prone to landslides (Corominas et al., 2014; 

Cui et al., 2013; Shen et al., 2018). In recent years, thanks to 

significant scientific advances in physical/process-based 

models (Guzzetti 2003; Han et al., 2017) and statistical 

models (Anbalagan and Singh 1996; Liu 2003; Liu et al., 

2020), the field has made significant breakthroughs, and 

several models and methods have been recommended for 

landslide susceptibility assessment. Physical/process-based 

models typically use random flow routing models (Scheild 

and Rickenmann 2011) or Navier-Stokes (N-S) equation 

based models (Pellegrino et al., 2015) to simulate the depth 

and velocity of landslides, thereby addressing the challenges 

of analyzing and predicting hazards. However, 

physical/process-based models depend on extensive field data, 

and for large-scale applications, the computational and 

economic costs required to obtain reliable results make their 

widespread use challenging. 

 

In contrast, statistical models provide a more economical and 

less computationally demanding approach for predicting the 

spatial distribution of landslides (Di Napoli et al., 2020; 

Huang et al., 2021b). By assuming that factors responsible for 

past landslide occurrences will repeatedly trigger future 

events—i.e., the past is the key to the future—statistical 

models such as bivariate statistical analysis (Constantin et al., 

2011), logistic regression (Tsangaratos and Ilia 2016), 

multiple regression (Felicísimo et al., 2013), and weights of 

evidence (Tsangaratos et al., 2017) have been widely regarded 

as suitable tools for assessing landslide susceptibility on a 

regional scale. In recent years, machine learning algorithms 

(Support Vector Machines (Pham et al., 2018), Artificial 

Neural Networks (Ermini et al., 2005), Decision Trees 

(Shaikhina et al., 2019), and Random Forests (Rigatti 2017) 

e.g.) have gained considerable attention within statistical 

methods. A growing number of researchers have obtained 

high-accuracy classifiers by employing these algorithms to 

capture the nonlinear relationships between landslide 

occurrences and their influencing factors. However, single 

models inherently involve certain uncertainties (Merghadi et 

al., 2018). Many scholars have therefore proposed minimizing 

these uncertainties by combining the predictive outputs of 

multiple algorithms (Chen et al., 2017a; Chen et al., 2017b; 

Dou et al., 2020). Ensemble learning algorithms have made 

substantial contributions to mitigating uncertainty and 

improving predictive accuracy. Inspired by the statistical 

regularities of random phenomena, these ensemble methods 

can yield superior predictions compared to individual 

classifiers (Zhang et al., 2022). Consequently, as highlighted 

by Dou et al (Dou et al., 2020), it is essential to explore new 

ensemble methods for landslide susceptibility mapping. 

 

In addition, most susceptibility studies, both domestically and 

internationally, focus on optimizing machine learning models 

to achieve higher accuracy, with relatively little attention paid 

to the internal decision-making mechanisms of these models. 

Landslide formation is highly complex, and the regional 

characteristics of various influencing factors have a 

significant impact on landslide distribution (Hutter et al., 1994; 

Zeng et al., 2024). As highlighted in the review by Dikshit et 

al. (Dikshit et al., 2021), a lack of model interpretability is one 
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of the primary challenges currently faced when applying 

artificial intelligence in the geohazard domain. Previous 

research has often employed methods such as Pearson’s 

correlation coefficient, the Gini index, and Geo Detector to 

interpret model outputs and the importance of influencing 

factors (Chen et al., 2018). For example, Lin et al. (Lin et al., 

2021), examining a typical mountainous environment — 

Fujian Province—utilized an information-value model (which 

measures the information gain of geological hazard points 

under different factor classes) and the Geo Detector approach 

to systematically assess the regional distribution of geological 

hazards, as well as quantitatively analyze the key triggering 

factors and their interaction effects. While these methods 

offer insights at a global level, they lack the capacity to 

elucidate the specific factors driving predictions at the local or 

individual level. SHAP is an explainable AI technique that has 

recently attracted substantial attention (Marcílio and Eler 

2020). The method offers a variety of visualizations that aid in 

clarifying the interdependencies among variables with respect 

to model outcomes (Zhang et al., 2023). This approach has 

been widely applied across multiple domains, including 

medical diagnostics and judicial decision-making assistance 

(Mokhtari et al., 2019; Wang et al., 2024). Pradhan et al 

(Pradhan et al., 2023). were the first to introduce SHAP into 

susceptibility research, illustrating and quantifying the 

importance and interactions of different influencing factors in 

a model. Their findings demonstrate that machine learning 

models combined with the SHAP method achieve superior 

decision-making performance and interpretability. 

 

The primary contribution of this study lies in the application 

of ensemble learning algorithms and an interpretable model 

(SHAP) to landslide susceptibility modeling. The main 

objective is to quantitatively evaluate the influence of 

GIS-based ensemble models (Stacking, Boosting, and Voting) 

on landslide susceptibility in Yanbian Prefecture, China, and 

to validate and compare the performance of different models 

using performance metrics (the Area Under the Receiver 

Operating Characteristic Curve, AUC). Subsequently, SHAP 

is employed to elucidate the decision-making processes of 

these ensemble models, thereby promoting the effective use 

of such models in landslide hazard management and 

supporting planning and disaster reduction practices in the 

study region. 

 

2. Study Area and Data Sources 
 

2.1 Study Area 

 

Yanbian Korean Autonomous Prefecture (hereafter referred 

to as Yanbian Prefecture) is located in eastern Jilin Province, 

China, spanning from 41°59′47″ N to 44°30′42″ N and 

127°27′43″ E to 131°18′33″ E (Figure 1). There are several 

reasons for choosing Yanbian Prefecture as the study area. 

Firstly, Yanbian Prefecture represents a typical mountainous 

environment, with mountain areas occupying approximately 

54.8% of the total area. The overall terrain exhibits 

considerable elevation differences and is characterized by 

three geomorphological gradients—mountains, hills, and 

basins—that facilitate landslide evolution. Secondly, the 

regional ecosystem plays a pivotal role within the ecological 

network of Northeast Asia, and its ecological conditions are 

closely tied to both the socioeconomic development and 

ecological security of Jilin Province. Finally, extensive 

preliminary investigations on landslide hazards have been 

conducted in Yanbian Prefecture, yielding a rich dataset of 

landslide occurrences and associated influencing factors, thus 

establishing a robust spatial data foundation for this study. 

 

The study area encompasses approximately 4,330 km², with 

elevations ranging from 3 m to 2,659 m. The terrain is 

generally higher in the west and lower in the east, sloping 

from the southwest, northwest, and northeast toward the 

southeast. In addition, it falls under a temperate monsoon 

climate, with an annual mean temperature of 4.8°C and 

average yearly precipitation of about 640 mm—primarily 

concentrated between June and August. Precipitation is 

unevenly distributed, with the Changbai Mountain area 

receiving the highest rainfall in the region. As of late 2023 to 

early 2024, the permanent population is recorded at 1.8949 

million. Granite constitutes the predominant lithology in this 

region, followed by basalt and shale. Situated in the heart of 

Northeast Asia, Yanbian Prefecture plays a key role in major 

economic development strategies, such as the Belt and Road 

Initiative (BRI), the Revitalization of Northeast China, and 

the 'Changchun–Jilin–Tumen' Pilot Development and 

Opening-up Zone. Intensified economic activity and tourism 

have accelerated anthropogenic landscape modification, 

disrupting local ecosystems and increasing landslide 

susceptibility.  

 
Figure 1: Location map and landslide inventory of Yanbian Prefecture 
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2.2 Data Sources 

 

The main data sources employed in this study include: (1) 30 

m-resolution Copernicus DEM used to extract various 

topographic, geomorphological, and hydrological factors; (2) 

10 m-resolution Sentinel-2A imagery for deriving land cover 

and NDVI; (3) rainfall records obtained from meteorological 

stations throughout Yanbian Prefecture; (4) geological maps 

provided by the Jilin Provincial Geological Bureau; and (5) 

road network and river data acquired from the Jilin Provincial 

Department of Transportation and the Jilin Provincial 

Department of Water Resources, respectively. Table 1 shows 

the data type and source. These data are used to generate 

multi-source spatial data that can be used for spatial 

superposition and model operations after unified in the WGS 

1984 projected coordinate system and formatted as unified 

30m×30m resolution raster data. 

 

The landslide distribution data for Yanbian Prefecture 

primarily derive from the Jilin Province Geological Hazard 

Risk Assessment Survey and the Yanbian Prefecture 

Monitoring Project, supplemented by data compilation, 

remote sensing imagery, and field investigations. A total of 

313 landslide sites were identified. 

Tabel 1: Data and data sources 
Data Sources Scale 

Landslide 
Geological disaster risk survey in Jilin 

Province 
 

DEM Copernicus DEM 30m×30m 
Remote 

Sensing Image 
Sentinel-2A 10m×10m 

Rainfall 
Yanbian Prefecture meteorological 

stations 
30m×30m 

Geological map Jilin Provincial Bureau of Geology 1: 500, 000 

Road network Jilin Provincial Transportation Bureau 1: 100, 000 

River network Jilin Provincial Water Resources Bureau 1: 100, 000 

 

2.3 Selection of Landslide Influencing Factors 

 

The selection of influencing factors forms the foundation of 

susceptibility assessment, as it determines the information 

that can be incorporated into the modeling process. Because 

landslide formation is highly complex, there is currently no 

consensus among scientists on all potential factors. Drawing 

upon the approach of Huang et al, this study selected factors 

that are both comprehensive and physically meaningful. 

Specifically, four categories encompassing eleven indicators 

were chosen (Figure 2). These four categories include: (1) 

Topographic factors—elevation, slope, aspect, and curvature; 

(2) Hydrological factors—annual average rainfall, stream 

power index (SPI), topographic wetness index (TWI), and 

distance to rivers; (3) Land cover factors—land use, NDVI, 

and distance to roads; (4) Lithological factors. Table 2 

describes the relationship between various factors and 

landslide. 

 

Elevation, Slope, Aspect, Curvature, TWI, and SPI were 

derived and calculated at the same 30m×30m resolution using 

the Copernicus DEM. Lithology data were obtained from 

geological maps (1:50,000 scale). For the Distances to roads 

and rivers, the nearest distance from landslide disaster points 

to the nearby line objects was computed. Rainfall data 

collected from meteorological stations were interpolated into 

raster thematic maps using the inverse distance weighting 

(IDW) method. 

Table 2: Relationship Between Various Factors and 

Landslide. 
Influencing 

Factors 
Description 

Elevation 

Elevated terrain often receives intense precipitation and 

snowmelt, increasing soil saturation and promoting landslide 
initiation, particularly on fractured or weathered slopes. 

Slope 
Steep slopes are inherently less stable due to enhanced 

gravitational forces acting on soil and rock masses. 

Aspect 

Aspect regulates solar radiation exposure, shaping 

microclimates through variations in soil moisture and 

temperature. 

Curvature 
Curvature affects water flow convergence, slope erosion, and 

soil stability. 

Landuse 
Land use directly affects vegetation protection, hydrological 

processes, and surface stability. 

TWI An indicator of surface water accumulation potential. 

Lithology 
Influencing the supply of slope materials, mechanical 

stability, and hydrological processes. 

NDVI Reflecting vegetation coverage. 

Annual 
average 

Rainfall 

Precipitation erodes surface materials, while rainwater 

infiltration erodes the slope interior. 

Distance to 
Road 

Blasting and excavation during road construction undermine 
slope base stability. 

Distance to 
River 

Areas near rivers are subject to stronger water erosion. 

 
Figure 2: Influencing Factors: (a) Elevation, (b) Slope, (c) 

Aspect, (d) Curvature, (e) Lithology, (f) Landuse, (g) Rainfall, 

(h) TWI, (i) NDVI, (j) Distance to Rivers, (k) Distance to 

Roads 

3. Methodology 
 

3.1 Evaluation Unit 

 

In susceptibility studies, commonly used evaluation units 

include grid units, slope units, and watershed units (Huang et 

al., 2021a; Lv et al., 2023; Qin et al., 2019). As the 
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fundamental carriers of all information in the susceptibility 

evaluation process, selecting appropriate evaluation units is a 

crucial prerequisite for ensuring the quality of subsequent 

research. Among these, grid units, usually based on DEM data, 

divide the study area into regular grids and are the most 

commonly used units in landslide susceptibility evaluation. 

However, the regularity of grid units may not effectively 

reflect certain topographic features, especially in complex 

mountainous and canyon areas (Alvioli et al., 2016). Slope 

units, which are geomorphologically homogeneous units 

based on terrain curvature and watershed boundaries, are 

more suitable for analyzing the control of local topography 

(such as slope and curvature) on landslide initiation. However, 

they may fragment the complete path of landslide from the 

source area to the flow zone, providing a weaker 

representation of hydrological connectivity. In contrast, 

watershed units, as the fundamental units for landslide events, 

naturally match the entire process of landslide from source to 

flow to accumulation, making them more suitable for 

landslide susceptibility evaluation from a hydrological 

analysis perspective (Qin et al., 2019). 

 

In this study, the ArcGIS Pro hydrological analysis tools were 

used to extract watershed units based on 30m resolution DEM 

data for Yanbian Prefecture. First, the DEM data was 

preprocessed with sink filling, and the ArcSWAT model with 

a multi-directional flow algorithm and the “burn-in” method 

was applied to enhance the accuracy of river network 

extraction. Then, river network nodes were extracted using 

watershed thresholds of 5 km² and 10 km², respectively, to 

create sub-watersheds, which were compared with remote 

sensing images. The results showed that the watershed units 

extracted using the 5 km² threshold performed better for 

Yanbian Prefecture. Finally, a total of 35,505 watershed units 

were extracted in Yanbian Prefecture, among which 313 

historical landslide events were located in 297 watershed units 

as positive samples. An equal number 297 of non-landslide 

watershed units were randomly selected as negative samples. 

Following previous work (Tian et al., 2025), the dataset was 

divided into training and validation sets in a 7:3 ratio. 

 

3.2 Ensemble Learning Algorithm 

 

3.2.1 Bagging 

 

Bagging is an ensemble learning method proposed by 

Breiman (Breiman 1996), which aims to improve the stability 

and accuracy of predictions by reducing the variance of the 

model. For a given training set 𝐷 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)}, The process of the Bagging 

algorithm can be represented by the following steps: 

 

1) From the original training dataset 𝐷, Bootstrap sampling is 

applied to randomly select 𝑁 samples, generating 𝐾 subsets 

𝐷𝑘 (each subset has a size of 𝑁). 

 

2) For each subset 𝐷𝑘, train a base classifier 𝑓𝑘(𝑥) 

 𝑓𝑘(𝑥) =  Model trained on 𝒟𝑘 (1) 

3) For a new input sample 𝑥, each base classifier makes a 

prediction 𝑓𝑘(𝑥). The final prediction result is obtained by 

voting or averaging: 

 

For classification problems (Hard Voting): 

 𝑦̂ = arg𝑚𝑎𝑥
𝑦

 ∑  𝐾
𝑘=1 𝕀(𝑓𝑘(𝑥) = 𝑦) (2) 

3.2.2 Stacking 

 

Stacking is a layered ensemble algorithm approach aimed at 

improving modeling performance by combining different 

algorithms such as CART, MARS, and Lasso into a learner, as 

proposed by Wolpert (Kardani et al., 2021; Wolpert 1992). 

Typically, Stacking involves two levels of learners. In level 0, 

various ML algorithms are combined to generate a 

meta-dataset from the original training set. Then, in level 1, 

the meta-dataset is used to train a meta-learner, which 

ultimately produces the final result. Figure 3 provides a 

simple flowchart of the Stacking algorithm. Compared to 

Bagging, Stacking enhances the predictive power of 

classifiers. This ensemble method has proven to be highly 

effective in various fields, including remote sensing, 

computer science, and finance. 

 

The Stacking method integrates multiple base learners 

through a meta-learner, making the choice of the meta-learner 

crucial. Generally, to prevent overfitting, the structure of the 

meta-learner should be as simple as possible. In this study, 

logistic regression (LR) (Su et al., 2012) is used as the 

meta-learner. 

 
Figure 3: Flowchart of the Stacking algorithm 

3.2.3 Voting 

 

The characteristic of the voting algorithm is its simple 

structure (Parhami 1994). It determines the final classification 

result by aggregating the predictions from multiple classifiers 

through voting. In binary classification problems, Soft Voting 

is typically used. Assume we have 𝑁  base classifiers, and 

each classifier outputs a predicted probability for each class. 

For each sample 𝑥, assume there are 𝐶 classes (labels). 

 

For each base classifier 𝑖, the predicted probability for class cc 

is 𝑃(𝑐 ∣ 𝑥)(𝑖). Assuming we use the average probability, the 

final predicted probability for class 𝑐 is: 

 𝑃(𝑐 ∣ 𝑥) =
1

𝑁
∑  𝑁
𝑖=1 𝑃(𝑐 ∣ 𝑥)

(𝑖) (3) 

where 𝑃(𝑐 ∣ 𝑥)(𝑖)  represents the predicted probability from 

classifier 𝑖  that sample 𝑥  belongs to class 𝑐.  𝑃(𝑐 ∣ 𝑥) 
represents the average predicted probability for class 𝑐 across 

all base classifiers. 

 

The final class prediction 𝑦̂ will be the class with the highest 

probability: 

 𝑦̂ = arg𝑚𝑎𝑥
𝑐

 𝑃( 𝑐 ∣ 𝑥 ) (4) 
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3.3 Implementation Details 

 

Base Model Selection. The following principles should be 

followed when generating a multi-algorithm ensemble model 

(Sagi and Rokach 2018): First, in order for the ensemble 

method to leverage the advantages of various algorithms, the 

base learners should be as diverse as possible; Secondly, in 

order to not affect the accuracy of the final model, the 

algorithms need to have high predictive performance. Based 

on the above principles, this paper selects five ML algorithms 

(Including Random Forest, XGBoost, LightGBM, CatBoost, 

and AdaBoost.). Their structures and learning approaches 

differ, with some focusing on the rules for node splitting 

(decision tree series), while others emphasize weighted 

combination and boosting (boosting series). This diversity 

helps minimize errors caused by algorithm instability. 

 

Numerical processing during sampling. During the training 

process of base models, different features often have different 

scales. If the data is not preprocessed, some models may fail 

to exhibit their true predictive performance. Therefore, we 

apply normalization to the data before model training. The 

normalization formula is as follows: 

 𝑋norm =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (5) 

Where 𝑋 is the original data, 𝑋𝑚𝑖𝑛 is the minimum value in 

the data, 𝑋𝑚𝑎𝑥  is the maximum value in the data, 𝑋norm  is the 

normalized data. 

 

Model related settings. In a multi-algorithm ensemble, 

selecting the appropriate combination of base learners is a 

challenging task. As the number of base learners increases, 

the number of possible combinations grows exponentially, 

making it impractical to manually search for these 

combinations. For the combination of base learners, there are 

generally two strategies: one is algorithms like (ABC) 

(Karaboga 2010), which aim to exchange space for time by 

consuming more resources to reduce time. However, this 

algorithm is prone to getting stuck in local optima, meaning it 

does not necessarily find the optimal combination. The other 

strategy is to exchange time for space, which aims to consume 

more time in order to achieve better results. In this study, due 

to the use of a small sample dataset for rapid training, a grid 

search method is employed to determine the optimal 

combination of base learners. In this process, the 

multi-algorithm ensemble serves as the model to be optimized, 

and the base learners are treated as discrete parameters. The 

grid is divided with a step size of 1, and all parameters are 

traversed. 

 

Model Accuracy. To perform a performance comparison, we 

considered statistical metrics such as Accuracy, Precision, 

Cohen's kappa, and F1-score (Yao et al., 2022), as shown in 

Formula 6. 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
,

𝐹𝐼 −  score =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
,

𝑘𝑎𝑝𝑝𝑎 =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒

 (6) 

Where TP, TN, FP and FN represent true positive, true 

negative, false positive, and false negative, respectively; 𝑃𝑜 is 

the observed agreement proportion; 𝑃𝑒  is the expected 

agreement proportion. Additionally, we also calculated the 

AUC (Area Under the Receiver Operating Characteristic 

Curve). 

 

3.4 SHAP 

 

Traditional models (such as linear regression, decision trees, 

etc.) are relatively simple and easy to interpret. However, with 

the development of machine learning technology, more and 

more complex models have started to replace these traditional 

methods (Zhang et al., 2023). In particularly, deep learning 

and ensemble learning methods make decisions through 

multiple layers and nonlinear relationships, which allow them 

to achieve better performance on many tasks than traditional 

models. However, this complexity has significantly reduced 

the interpretability of the models, making it difficult for data 

scientists to understand how these models reason and make 

predictions. The design goal of SHAP is to address the 

above-mentioned issues (Lundberg 2017). It introduces 

Shapley values, a concept from game theory used to fairly 

allocate the rewards in a cooperative game. SHAP uses 

Shapley values to assign an exact contribution value to each 

feature, which represents the impact of that feature on the 

final prediction result. 

 

The Shapley value is typically calculated based on Formula 7, 

which computes the importance of a feature by calculating its 

marginal contribution across all possible permutations of 

features. 

 𝜙𝑖(𝑓) = ∑  𝑆⊆𝑁∖{𝑖}
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] (7) 

Where 𝜙𝑖(𝑓) is the Shapley value for feature 𝑖, representing 

the contribution of feature 𝑖 to the prediction. 𝑁 is the set of 

all features. 𝑆 is a subset of features from 𝑁 excluding 𝑖. 𝑓(𝑆) 
is the model's prediction using the subset of features 𝑆. 

 

4. Results 
 

4.1 Model Performance and Evaluation 

 

The landslide inventory and its associated influencing factors 

were partitioned into training and testing sets and 

subsequently imported into the Python environment. The 

model construction process is illustrated in Figure 4 To reduce 

uncertainties during the training and testing phases, this study 

employed the Particle Swarm Optimization (PSO) method to 

provide hyperparameters for the base classifier. PSO is a 

swarm intelligence–based optimization algorithm that 

simulates the collective behavior of social animals (flocks of 

birds, schools of fish e.g.), leveraging information sharing 

among individuals in the population to seek an optimal 

solution. By setting the gradient descent objective function to 

1−AUC, the loss function was continuously minimized until 

convergence. As the number of iterations increased, the loss 

value gradually declined and ultimately reached its minimum, 

indicating a satisfactory training process. 

 

Subsequently, we used the area under the ROC curve (AUC) 

as the primary metric to evaluate predictive and generalization 

capabilities. In addition, Cohen’s Kappa (Kappa) and overall 

accuracy (ACC) were employed as supplementary quality 

indicators to further assess overall performance (Table 5). In 
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general, AUC values are interpreted as follows: excellent 

(0.9–1.0), very good (0.8–0.9), good (0.7–0.8), fair (0.6–0.7), 

and poor (0.5–0.6). The Kappa coefficient indicates the 

strength of agreement in the following ranges: almost perfect 

(0.8–1.0), substantial (0.6–0.8), moderate (0.4–0.6), fair (0.2–

0.4), slight (0–0.2), and poor (≤0). ACC, expressed in decimal 

form, represents the proportion of landslide occurrences and 

non-occurrences that are correctly classified, with values 

ranging from 0 to 1. The final hyperparameter configurations 

and performance metrics are presented in Table 4. 

 

Figure 4 illustrates the overall performance of the base and 

ensemble models for landslide susceptibility, as measured by 

the area under the ROC curve (AUC). The results indicate that 

the Stacking model achieves the highest AUC value (0.957), 

followed by the Bagging model (0.936). Among the base 

models, the overall performance is ranked as follows: 

CatBoost > XGBoost > Random Forest > LightGBM > 

AdaBoost. Considering these AUC values, it is evident that all 

models achieved favorable results, with the stacking model 

based on these tree-based models emerging as the most 

influential ensemble approach by enhancing the predictive 

performance of the homogeneous models. 

Table 4: The parameter sets used for each model, along with performance metrics (AUC – area under the ROC curve, ACC – 

Accuracy, and Kappa – Cohen’s kappa). 
Model Hyper-parameters AUC ACC Kappa F1 

RF 

n_estimators=160 

0.909 0.82 0.79 0.85 
min_samples_split=7 

min_samples_leaf=4 

max_depth=13 

Xgboost 

colsample_bytree=0.8 

0.91 0.86 0.72 0.88 
max_depth=3 

n_estimators=100 

subsample=0.9 

LightGBM 

subsample=0.8 

0.892 0.81 0.63 0.86 
n_estimators=100 

max_depth=10 
num_leaves=31 

AdaBoost 

base_estimator=DT 

0.872 0.84 0.67 0.8 base_estimator__max_depth=4 
n_estimators=100 

CatBoost 

learning_rate=0.05 

0.923 0.88 0.77 0.89 iterations=300 
depth=8 

Stacking / 0.957 0.85 0.78 0.86 

Bagging 
base_estimator=DT 

0.936 0.87 0.74 0.85 base_estimator__max_depth=4 

n_estimators=100 

Voting / 0.901 0.81 0.62 0.86 

 
Figure 4: AUC results of the models using validating dataset 

4.2 Landslide Susceptibility Maps 

 

To further analyze the predictive performance of the ensemble 

algorithms, the trained models (Stacking, Bagging, and 

Voting) were applied to the study area. Each watershed unit 

was assigned a landslide occurrence probability, which was 

then imported into a GIS environment. The natural breaks 

method classified susceptibility into five categories: very low, 

low, medium, high, and very high. The susceptibility zoning 

map and corresponding area percentages are presented in 

Figure 5 As shown in the figure, the generated susceptibility 

zones successfully identified areas corresponding to early 

landslide events (the very high and high susceptibility zones), 

and the spatial distributions of the results from the three 

models were similar, indicating that all three models 

effectively reflect the development characteristics and spatial 
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trends of geological hazards in the study area. 

 

Based on the area percentages of the three ensemble models, 

landslide susceptibility in the study area exhibits distinct 

spatial distribution differences. Very low and low 

susceptibility zones account for approximately 66% of the 

total area, with the very low susceptibility zones being the 

most widely distributed and generally forming contiguous 

patches. In contrast, the high and very high susceptibility 

zones are concentrated in the central and western parts, 

forming linear clusters and accounting for about 22% of the 

total area. This region is critical for landslide hazard 

prevention and management, warranting enhanced 

monitoring. 

 
Figure 5: Landslide susceptibility maps: (a) Stacking, (b) 

Bagging, (c) Voting 

5. Discussion 
 

5.1 SHAP Model Interpretation 

 

Landslides have complex causes, and identifying the primary 

influencing factors can provide valuable guidance for 

landslide disaster management. In this study, we adopt the 

Shapley Additive Explanations (SHAP) algorithm to 

quantitatively evaluate how each factor contributes to the 

model’s predictions. The main calculation procedure is as 

follows: by considering all possible combinations of 

influencing factors in the samples, we compute the probability 

of landslide occurrence with and without each factor. The 

larger the absolute value of the resulting Shapley value, the 

more important the factor. Figure 6 presents the ranking of 

influencing factors in the study area and the SHAP summary 

plot. In the blue bar chart, the factors are ordered based on the 

absolute mean Shapley values. It can be observed that 

distance to roads, rainfall, and NDVI exert the greatest 

influence on landslide occurrence in this region. 

Consequently, in geological hazard risk assessment and 

management, these factors should receive heightened 

attention, and targeted prevention and mitigation measures 

should be implemented. In contrast, factors such as TWI, 

lithology, and aspect show no significant impact on landslide 

occurrence here. The violin plot shows that samples with 

lower distance values (blue group) are mostly located to the 

right of the zero line. This suggests that closer proximity to 

roads is associated with higher predicted landslide 

susceptibility. To visually illustrate how variations in the 

values of key factors affect landslide susceptibility, 

single-factor dependence plots for the top three factors are 

provided. This approach enhances the model’s transparency 

and interpretability (Figure 7). 

 
Figure 6: Feature permutation for overall Yanbian. 

 
Figure 7: SHAP Dependence Plots: (a) Road, (b) Rainfall, (c) NDVI 

When the distance to roads is less than 738 m, it promotes 

landslide occurrence, and the closer the distance, the stronger 

the promoting effect becomes (Figure 7a). In the study area, 

most of the extremely high and high landslide susceptibility 

zones are located near roads. On the one hand, road 

construction often entails the removal of large swathes of 

vegetation and topsoil, potentially leading to exposed spoil 

heaps or waste disposal sites. If protective measures are 

inadequate, these areas are prone to sediment scouring during 

periods of heavy rainfall or snowmelt. Once the eroded 
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materials enter slopes or gullies, they can evolve into 

landslide initiation sources. On the other hand, the apparent 

high importance of “distance to roads” may be partially 

attributed to limitations in hazard investigations. Although we 

supplemented the historical landslide data with remote 

sensing imagery, potential biases in field surveys cannot be 

entirely eliminated. Overall, the closer a site is to roads, the 

more pronounced the impacts of construction, drainage, and 

vegetation destruction become, leading to a generally higher 

risk of landslides and related geological hazards. Therefore, in 

engineering practice, it is necessary to plan and design roads 

scientifically to minimize disturbances to the geological 

environment caused by road construction. Simultaneously, 

strengthening monitoring and protective measures for key 

road-adjacent areas, especially those with steep slopes and 

concentrated drainage, is essential for effectively reducing 

both the likelihood of landslide occurrences and the 

associated losses. 

 

When the multi-year average rainfall is below 625 mm, it 

strongly promotes landslide occurrence, after which this 

promoting effect weakens (Figure 7b). The occurrence of 

landslides depends on the gradual accumulation of loose 

materials within a specific area, reaching a certain thickness 

and scale. When rainfall is moderate, it both facilitates rock 

weathering and soil fragmentation—generating loose 

materials—and provides a relatively stable environment that 

allows these materials to accumulate in gullies or at the foot of 

slopes, forming potential landslide source areas. Under such 

conditions, once locally accumulated materials encounter a 

triggering event (short-term heavy rainfall e.g.), they are 

likely to become unstable and induce landslides. However, 

when rainfall is excessive, the situation changes dramatically. 

Prolonged, intense rainfall continuously scours the slopes, 

carrying away or dispersing loose materials over a wider area 

before they have a chance to sufficiently accumulate; as a 

result, forming a concentrated source locally becomes 

difficult. This continual scouring not only disrupts the 

material-accumulation process but also “dilutes” or even 

directly removes potential source materials that might 

otherwise build up. Consequently, while increases in rainfall 

up to a certain point can facilitate the formation of loose 

material, excessive rainfall instead impedes its incremental 

accumulation and thus inhibits landslide occurrence 

(Anderson and Sitar 1995; Crosta and Frattini 2008). 

 

Figure 7c illustrates the intrinsic relationship between 

vegetation coverage and landslide occurrence. As an 

important indicator of surface vegetation quality, NDVI is 

significantly negatively correlated with landslide risk. In areas 

with low NDVI values (< 0.4), vegetation degradation reduces 

both soil water retention capacity and shear strength, making 

these regions more susceptible to landslides under heavy 

rainfall and human engineering activities. In contrast, areas 

with high NDVI benefit from enhanced friction angle and 

cohesion provided by plant root systems, thereby forming an 

effective soil and water conservation barrier (Zhao et al., 

2020). 

 

5.2 Ensemble Learning Applied to Landslide 

Susceptibility 

 

Accurate and timely mapping of landslide susceptibility can 

significantly inform the spatial distribution of landslide risk, 

thereby assisting government policy-making and enhancing 

disaster management capabilities. A comprehensive analysis 

of the susceptibility zoning map and landslide survey results 

in the study area reveals consistency between the two; 

however, the results obtained from different methods exhibit 

some differences. We found that ensemble learning models 

generally outperform individual machine learning models due 

to their significant advantages in reducing variance and bias, 

as well as enhancing model robustness and generalization 

capability (Dietterich 2002; Dong et al., 2020). Nevertheless, 

our validation results indicate that ensemble learning does not 

always guarantee favorable outcomes. In many susceptibility 

studies, the distinct characteristics of various machine 

learning models mean that different models may be applicable 

to different regions, with multiple models often being suitable 

for the study area. Ensemble learning, as a framework strategy, 

can transform weaker classifiers into robust models tailored to 

specific problems. Specifically, Stacking exploits the 

predictive features of different models and automatically 

learns optimal fusion weights via a meta-learner (Pavlyshenko 

2018); Bagging focuses on reducing variance through random 

sampling and voting/averaging of results (Quinlan 1996); and 

Voting is the simplest and most easily implemented 

post-fusion method (Parhami 1994). 

 

Yanbian Prefecture lies within a geologically active and 

topographically rugged mountainous region, where landslides 

occur frequently and pose serious threats to both human safety 

and ecological stability. In this context, developing 

science-based disaster prevention strategies is an urgent 

priority. By enabling both predictive accuracy and 

interpretable insights into physical drivers, this study offers a 

robust framework for region-specific risk management. 

 

Based on the findings, we propose the following 

recommendations: 

 

(1) Targeted risk zoning — High-susceptibility areas should 

be delineated based on susceptibility mapping and dominant 

triggering factors. Differentiated land-use planning that 

balances ecological protection with infrastructure 

development can reduce disaster risks associated with human 

disturbances. 

 

(2) Enhanced community resilience — In areas of high and 

very high susceptibility, emergency shelter networks should 

be expanded, regular preparedness training established, and 

public awareness strengthened through education campaigns 

and drills to improve self- and mutual-aid capabilities. 

 

(3) Intelligent early warning systems — A dynamic, 

high-resolution monitoring framework should be developed 

by integrating UAV-based inspections, real-time remote 

sensing, big data analytics, and machine learning. This would 

enhance both the spatial accuracy and timeliness of landslide 

forecasting. 

 

5.3 Limitations and Outlook 

 

While the ensemble models demonstrated strong predictive 

skill and interpretability, several limitations remain. The 

landslide inventory, although enhanced with remote sensing, 
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may underrepresent events in inaccessible terrain or 

underreported periods. Key dynamic triggers—such as 

near-real-time rainfall intensity, antecedent soil moisture, and 

anthropogenic disturbances—were unavailable and thus 

excluded, potentially limiting the temporal responsiveness of 

the model. Moreover, SHAP-based interpretation, while 

insightful, adds computational overhead as model complexity 

scales. 

 

Future work should integrate high-temporal-resolution 

meteorological and hydrological data to capture transient 

triggering conditions. Hybrid approaches combining 

data-driven models with physically based process simulations 

may improve early warning accuracy. Finally, testing the 

framework across varied topographies and tectonic settings 

will be crucial to assess its robustness and transferability for 

broader hazard mitigation strategies. 

 

6. Conclusion 
 

This study combines ensemble learning with the SHAP 

method, which not only enhances the accuracy of landslide 

susceptibility prediction but also interprets the results of the 

Stacking model by analyzing both global and local 

interdependencies. The main conclusions are as follows: 

 

(1) To address the uncertainty inherent in a single model, this 

study employs multiple base models and integrates them 

using methods such as Stacking, Bagging, and Voting. 

Among these, Stacking demonstrated the best performance 

due to its higher prediction accuracy. 

 

(2) The SHAP algorithm was employed to interpret the 

Stacking model, revealing the contributions of various 

influencing factors to landslide prediction. The results 

indicate that road proximity, rainfall, and NDVI are the 

primary factors affecting landslide hazards in Yanbian 

Prefecture. 

 

(3) Landslide hazards in Yanbian Prefecture generally exhibit 

a spatial pattern of being higher in the west and lower in the 

east, with distinct band-like and spatial clustering 

characteristics. Extremely high and high susceptibility areas 

are mainly concentrated in the western and central regions, 

whereas low susceptibility areas are primarily distributed in 

the eastern region. 
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