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Abstract: The quality of Structural Health Monitoring (SHM) data is paramount to the accuracy of structural condition assessment and 

service life prediction. However, monitoring data acquired in the field often exhibit significant non-stationarity and contain outliers due to 

environmental interference and other factors, posing severe challenges to subsequent data analysis. Traditional outlier detection methods 

often suffer from low accuracy and high false-positive rates when processing non-stationary signals, owing to interference from trend and 

periodic components. To address this issue, this study proposes a joint data correction framework based on Variational Mode 

Decomposition (VMD) and the Isolation Forest algorithm. The proposed method first utilizes the adaptive decomposition capability of 

VMD to decompose the original non-stationary signal into a series of Intrinsic Mode Functions (IMFs). The first component (IMF1) is 

extracted as the macroscopic trend of the signal, achieving efficient signal detrending. Subsequently, the Isolation Forest algorithm is 

applied to the detrended residual signal to accurately identify and locate outliers. Finally, linear interpolation is employed to correct the 

identified outliers. To validate the effectiveness of the proposed method, a synthetic dataset comprising trend, multi-periodic oscillations, 

and noise was constructed. Comparative experimental results demonstrate that the proposed VMD-Isolation Forest framework 

significantly enhances the accuracy and robustness of outlier detection compared to the direct application of the 3σ rule or the Isolation 

Forest algorithm. It effectively corrects anomalous disturbances while maximally preserving the intrinsic dynamic characteristics of the 

original signal. This research provides an efficient and reliable preprocessing paradigm for non-stationary SHM data, laying a solid data 

foundation for subsequent high-precision structural damage identification and performance prediction models. 

 

Keywords: Structural Health Monitoring (SHM), Outlier Detection, Variational Mode Decomposition (VMD), Isolation Forest, 

Non-stationary Signal, Data Preprocessing.  

 

1. Introduction 
 

Structural Health Monitoring (SHM) is a core technology for 

ensuring the operational safety of critical infrastructure. By 

collecting real-time dynamic response data of structures (e.g., 

stress, vibration, and displacement), SHM provides a crucial 

basis for assessing the evolution of structural damage and 

predicting remaining service life (Farrar and Worden 2012). 

With the rapid development of complex engineering projects 

such as large-scale bridges and long-span spatial structures, 

traditional monitoring methods relying on manual inspection 

and preset threshold alarms are no longer adequate for modern 

engineering applications due to their inherent limitations in 

monitoring accuracy and timeliness (Giordano, Quqa et al. 

2023, Qi, Hou et al. 2024). In this context, efficient 

decomposition theories and precise modeling methods for 

non-stationary signals have become central research topics in 

the SHM field (Dong, Li et al. 2010, Vazirizade, Bakhshi et al. 

2018, Bisheh and Amiri 2023). 

 

Early signal analysis methods primarily relied on the Fourier 

Transform. However, this method is only applicable to 

stationary signals and struggles to effectively capture and 

analyze non-stationary signals with time-varying 

characteristics. Although Wavelet Analysis partially 

addresses this issue through its multi-scale time-frequency 

decomposition capabilities, the selection of its basis functions 

is highly dependent on a priori knowledge, and it suffers from 

inherent drawbacks such as energy leakage (Mallat 2008). 

Subsequently, the Empirical Mode Decomposition (EMD) 

method, proposed by Huang et al. (1998), became a 

mainstream technique in the field due to its excellent adaptive 

properties. However, the mode mixing phenomenon inherent 

in EMD—where frequency components of different physical 

significance are coupled within the same mode—severely 

compromises the reliability of its decomposition results 

(Huang, Shen et al. 1998). For instance, when processing 

signals containing high-frequency transient noise, EMD is 

prone to generating spurious modal components, which can 

lead to a misjudgment rate of over 30% in subsequent 

structural damage identification (Lei, Lin et al. 2013). 

 

To overcome these limitations, Dragomiretskiy et al. (2014) 

introduced a novel signal processing model called Variational 

Mode Decomposition (VMD), which features adaptivity, 

quasi-orthogonality, and a completely non-recursive nature. 

Its core idea is to transform the complex signal decomposition 

process into a mathematical problem of finding the optimal 

solution to an unconstrained variational problem. 

Consequently, it is frequently applied to the analysis and 

processing of non-stationary signals (Li, Liu et al. 2022). Li et 

al. (Li, Zou et al. 2023) proposed a progressive decomposition 

and double-screening strategy based on VMD to enhance the 

extraction of weak fault features in machinery, demonstrating 

its ability to accurately identify early mechanical faults even 

under noise interference, thus providing new insights for 

complex SHM. Ma et al. (Ma, Wang et al. 2022) utilized 

VMD to extract multi-scale features from non-stationary load 

signals in power systems and combined it with a Recurrent 

Neural Network (RNN) for classification, achieving an 

identification accuracy of 89.8% on a dataset of 200,000 users. 

Du (Du 2022) combined VMD with LSTM for damage 

prediction in concrete frames and long-span structures, 

optimizing the sensitivity and generalization of damage 

identification by decomposing structural response signals 

with VMD and inputting the multi-frequency features into an 

LSTM network. 

 

Due to the susceptibility of structures to seasonal climate and 

environmental damage, SHM data often contain a significant 
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number of outliers, which adversely affect subsequent data 

modeling and prediction. Traditional statistical methods for 

outlier detection, such as the 3σ rule and box plot analysis, are 

widely used due to their simplicity, but they are limited in 

their effectiveness at identifying complex patterns of 

anomalies or non-Gaussian noise. As research has progressed, 

machine learning-based anomaly detection methods, 

including clustering-based algorithms (e.g., K-means), 

classification-based algorithms (e.g., Support Vector Machine, 

SVM), and reconstruction error-based algorithms (e.g., 

Principal Component Analysis, PCA; Autoencoder), have 

shown better adaptability in SHM data anomaly identification. 

Recently, deep learning anomaly detection algorithms 

specifically designed for time-series data, such as 

LSTM-based models, have also been applied in the SHM 

domain. Furthermore, signal decomposition techniques like 

VMD can assist in identifying anomalous components by 

analyzing the characteristics (e.g., energy, frequency 

mutations) of the decomposed Intrinsic Mode Functions 

(IMFs). 

 

To address the aforementioned issues, this study designs a 

VMD-based outlier detection method: (1) Decompose the 

sensor-collected data using VMD and extract the results; (2) 

Use the resulting IMF1 component as the data's trend 

component and subtract it from the original data to obtain the 

detrended data; (3) Perform outlier detection on the detrended 

data, mark the detected outliers as missing values, and then 

impute them. 

 

2. Data Preprocessing Workflow 
 

Given the potential for outliers in monitoring data, and since 

sensor-collected data are typically non-stationary time series 

containing significant trend and complex periodic 

components, the performance of traditional anomaly detection 

methods is easily compromised when applied directly to such 

data. This interference can lead to a significant increase in 

detection errors. Therefore, this study proposes a strategy that 

combines VMD for data detrending with various outlier 

detection methods. 

 

The strategy first decomposes the original signal x(t) using 

VMD to obtain a set of Intrinsic Mode Functions (IMFs) 

{𝐼𝑀𝐹𝑖(𝑡)}𝑖=1
𝑛 . The first IMF component, IMF1, is selected as 

the low-frequency trend of the original signal, primarily 

because IMF1 can effectively represent the inherent 

frequency information and long-term evolutionary trend of 

the structural response. Subsequently, this low-frequency 

trend is separated from the original signal using the following 

equation to obtain the detrended signal xdetrended(t):  

 𝑥𝑡𝑟𝑒𝑛𝑑(𝑡) = 𝐼𝑀𝐹1(𝑡)，𝑥𝑑𝑒𝑡 𝑟𝑒𝑛𝑑𝑒𝑑(𝑡) = 𝑥(𝑡) − 𝑥𝑡𝑟𝑒𝑛𝑑(𝑡)
 (1) 

The Isolation Forest algorithm (Liu, Ting et al. 2008) and the 

3σ rule are then applied separately to the detrended signal 

xdetrended(t) to detect outliers. Once an outlier is detected, it is 

temporarily marked as a missing value, which is subsequently 

imputed. This process is repeated until no new outliers are 

detected or a preset iteration limit is reached. 

 

For the data points marked as missing values, this study 

employs the linear interpolation method for imputation (Blu, 

Thevenaz et al. 2004). The mathematical expression is as 

follows: 

 𝑦(𝑡) = 𝑦(𝑡𝑝𝑟𝑒𝑣) +
𝑦(𝑡𝑛𝑒𝑥𝑡)−𝑦(𝑡𝑝𝑟𝑒𝑣)

𝑡𝑛𝑒𝑥𝑡−𝑡𝑝𝑟𝑒𝑣
⋅ (𝑡 − 𝑡𝑝𝑟𝑒𝑣) (2) 

where tprev and tnext are the timestamps of the nearest valid data 

points before and after the missing point, respectively. This 

method effectively preserves the local trend characteristics of 

the original data and, compared to traditional mean-filling 

methods, can more effectively suppress the bias that may be 

introduced by smoothing. 

 

3. Experiment 
 

3.1 Data Characteristics 

 

To validate the effectiveness of the proposed method, this 

study constructed a synthetic dataset with non-stationary 

characteristics, including a trend component, multi-frequency 

periodic oscillation components, and Gaussian noise (Bandara, 

Hyndman et al. 2021). The synthetic dataset simulates the 

monitoring signals from 10 virtual stress sensors over 30 

consecutive days, with a sampling interval of 30 minutes. The 

mathematical expression for the synthetic time-series data is 

defined as follows: 

 𝑋𝑡(𝑖) = 𝑇𝑡 + 𝑆𝑡(𝑖) + 𝛾𝑅𝑡 (3) 

where the periodic term St(i) is a linear superposition of three 

Fourier series with different periods, and each Fourier series 

contains 5 pairs of random coefficients that are independently 

and identically distributed according to a standard normal 

distribution. The residual term Rt consists of Gaussian noise 

with a mean of 0 and a standard deviation of 1, simulating 

random interference during the measurement process. A 

weight of 𝛾 =0.2 to this term. The trend term Tt is defined by a 

quadratic polynomial: 

 𝑇𝑡 = 𝑁1(𝑡 +
𝑛

2
(𝑁2 − 1))2 (4) 

where N1 and N2 are independent random variables following 

a N(0,1) distribution. 

 

To further test the robustness and effectiveness of the 

proposed data preprocessing method, a certain proportion and 

magnitude of outliers were intentionally injected into the 

generated synthetic data. Figure 1 visually displays the 

original time-series data and the distribution of outliers for 

three representative sensors (numbered 1-3) selected from the 

10 virtual sensors. It can be clearly observed from the figure 

that these original signals exhibit significant non-stationarity, 

and the complex trend and multi-frequency periodic 

oscillation components are highly coupled. 
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Figure 1: Original time-series plots for three sensors (Sensor 

1, Sensor 2, Sensor 3) 

3.2 Outlier Correction 

 

Following the preprocessing workflow described in Section 2, 

the original signal x(t) is first decomposed using VMD. After 

decomposition, the low-frequency first intrinsic mode 

function, IMF1, is extracted as the low-frequency trend 

component xtrend(t) (Figure 2). Subsequently, this trend 

component is subtracted from the original signal to 

reconstruct the detrended signal xdetrended(t) (Figure 3). The 

Isolation Forest algorithm and the 3σ algorithm are then 

applied separately to the detrended signal xdetrended(t) for 

outlier detection. By comparing the original signals in Figure 

1 with the detrended signals in Figure 3, it can be observed 

that the VMD detrending process effectively eliminates the 

prominent trend interference in the original data. This 

preprocessing step allows subsequent anomaly detection to 

focus more accurately on the local random fluctuation 

characteristics of the signal itself, rather than being misled by 

trend variations. 

 

 

 
Figure 2: Low-frequency trend components xtrend(t) (IMF1) 

for three sensors 

 

 

 
Figure 3: Detrended signals xdetrended(t) for three sensors 

3.3 Preprocessing Results and Comparison 

 

To quantitatively evaluate the effectiveness of the proposed 

joint preprocessing framework, this section provides a 

comparative analysis of different preprocessing strategies. 

The primary objectives are to verify the necessity of 

VMD-based detrending for improving outlier detection 

accuracy and to compare the performance of different 

detection algorithms (Isolation Forest vs. 3σ rule) on the 

detrended signals. 

 

Figures 4(a)-(c) show a comparison between the data 

corrected by our proposed VMD-Isolation Forest joint 

preprocessing method and the original data. It is clearly 

observable that the abrupt changes, spikes, and other 

anomalies present in the original signal have been effectively 

identified and smoothed. Crucially, this correction process 

accurately preserves the overall long-term trend and intrinsic 

periodic oscillation features of the signal while eliminating 

local anomalous disturbances, without introducing significant 

signal distortion. This preliminarily validates the superior 
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balance of the joint method between effective data anomaly 

repair and signal fidelity preservation. 

 

 

 
Figure 4: Comparison of original data with data corrected by 

the VMD-Isolation Forest method 

To further highlight the advantages of the proposed method, 

Figures 5(a)-(c) display the results of the VMD-3σ method. 

Although this method also corrects some outliers, its 

effectiveness is slightly inferior to the VMD-Isolation Forest 

method, especially when dealing with boundary or 

asymmetrically distributed anomalies, where it may exhibit 

missed detections. This indicates that for residual sequences 

presenting complex non-Gaussian distributions after 

detrending, the unsupervised learning-based Isolation Forest 

algorithm possesses greater robustness and adaptability than 

the 3σ rule, which relies on the assumption of a normal 

distribution.  

 

 

 
Figure 5: Comparison of original data with data corrected by 

the VMD-3σ method 

Furthermore, to demonstrate the necessity of VMD 

detrending as the primary preprocessing step, we conducted a 

control experiment by directly applying outlier detection 

algorithms to the original signals. Figures 6(a)-(c) show the 

results of directly using the Isolation Forest algorithm. Due to 

the strong non-stationarity of the original signal, its inherent 

trend and periodic components severely interfered with the 

algorithm's density estimation. The results show that this 

method not only failed to identify all anomalies (as shown in 

Figure 6(b)) but also incorrectly classified some normal data 

points as outliers during the initial phase of the signal due to 

rapid trend changes (as shown in Figures 6(a) and 6(c)), 

leading to "false positives." 

 

Figures 7(a)-(c) display the results of directly applying the 3σ 

rule, which performed even more poorly. The trend and 

periodic components of the original signal "contaminated" the 

overall mean and variance, causing the calculated outlier 

detection threshold to be excessively large. Consequently, this 

method failed to identify almost any of the true outliers, 

proving that without detrending, traditional statistical 

methods are essentially ineffective for anomaly detection in 

non-stationary time-series data. 
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Figure 6: Comparison of original data with data corrected 

directly by the Isolation Forest method 

 

 

 
Figure 7: Comparison of original data with data corrected 

directly by the 3σ rule 

In summary, the analysis of the four sets of comparative 

experiments leads to the following conclusions: 

 

1) VMD Detrending is a Critical Step: Performing outlier 

detection directly on non-stationary raw data, regardless of 

the algorithm used, is highly susceptible to interference from 

trend and periodic components, leading to a significant 

decline in detection performance, or even failure. 

 

2) Isolation Forest Algorithm Exhibits Superior 

Performance: After VMD detrending, the Isolation Forest 

algorithm demonstrates more accurate and robust 

identification of outliers in complex data compared to the 

traditional 3σ rule. 

 

3) Therefore, the VMD-Isolation Forest joint preprocessing 

framework proposed in this study can most effectively correct 

anomalies in SHM monitoring data, providing a high-quality 

data foundation for subsequent high-precision time-series 

prediction models.3. 

 

4. Conclusion and Outlook 
 

4.1 Conclusion 

 

To address the prevalent issues of non-stationarity and outlier 

contamination in structural health monitoring data, this study 

has proposed and validated a novel data preprocessing 

framework that combines Variational Mode Decomposition 

(VMD) and the Isolation Forest algorithm. Through 

systematic experimental analysis on synthetic time-series data 

containing complex trends, periodic components, and injected 

anomalies, the following main conclusions are drawn: 

 

1) Necessity and Effectiveness of VMD Detrending: The 

experimental results unequivocally confirm that applying 

outlier detection algorithms (whether statistical or machine 

learning-based) directly to non-stationary raw signals leads to 

performance degradation due to severe interference from the 

signal's intrinsic trend and periodic components, resulting in 

numerous missed detections and false positives. Extracting 

and separating the signal's low-frequency trend component 

via VMD effectively eliminates this interference and is a 

critical prerequisite for achieving accurate outlier detection. 

 

2) Superiority of the Isolation Forest Algorithm: When 

detecting anomalies in the detrended residual signal, the 

unsupervised learning-based Isolation Forest algorithm 

demonstrates greater robustness and higher accuracy 

compared to the traditional 3σ rule. Particularly in handling 

asymmetric or complexly distributed anomalies, Isolation 

Forest can more effectively identify true outliers, thereby 

enhancing the reliability of the correction. 

 

3) Comprehensive Performance of the Joint Framework: 

The proposed VMD-Isolation Forest joint preprocessing 

framework successfully integrates the advantages of both 

methods. It not only accurately identifies and smooths abrupt 

changes and spikes in the data but also preserves the 

long-term trends and periodic oscillation features, which are 

crucial for structural analysis, thus avoiding signal distortion 

during the correction process 

 

In summary, the method proposed in this study provides an 

efficient and reliable data-cleaning tool for the SHM field, 

capable of significantly improving the quality of monitoring 

data and providing high-quality input for subsequent 
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advanced analysis tasks such as time-series forecasting, 

damage identification, and remaining service life assessment. 

 

4.2 Outlook 

 

Although this study has validated the effectiveness of the 

proposed method using synthetic data, there is still room for 

further in-depth research and expansion. Future work can be 

pursued in the following areas: 

 

1) Validation and Application on Real Engineering Data: 

Apply the method to long-term monitoring data from real 

engineering structures (e.g., large bridges, high-rise buildings, 

or offshore platforms). In real-world scenarios, data 

characteristics are more complex, potentially containing 

various types of noise and anomalies from different sources. 

This will serve as the ultimate test of the method's 

generalization ability and robustness. 

 

2) Adaptive Optimization of VMD Parameters: The 

decomposition performance of VMD depends on the selection 

of key parameters such as the number of modes (K) and the 

penalty factor (α). Currently, these parameters are often set 

based on experience. Future research could explore the 

integration of intelligent optimization algorithms (e.g., 

Genetic Algorithms, Particle Swarm Optimization, or 

Bayesian Optimization) to achieve adaptive parameter tuning, 

thereby further enhancing the accuracy and automation of 

signal decomposition. 

 

3) Exploration of Fusion with Other Anomaly Detection 

Algorithms: While Isolation Forest has shown excellent 

performance, it is worthwhile to explore combining VMD 

detrending with other advanced deep learning anomaly 

detection models (e.g., models based on Autoencoders or 

Long Short-Term Memory networks - LSTM) to assess 

whether further performance gains can be achieved in specific 

application scenarios. 

 

4) Quantitative Evaluation of Impact on Downstream 

Analysis Tasks: Systematically investigate the improvement 

in the accuracy of specific downstream tasks (e.g., structural 

modal parameter identification, damage localization and 

quantification, crack propagation prediction) using data 

preprocessed by this method. Through quantitative analysis, 

the practical value of this preprocessing method within the 

entire SHM workflow can be more comprehensively revealed. 
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