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Abstract: The quality of Structural Health Monitoring (SHM) data is paramount to the accuracy of structural condition assessment and
service life prediction. However, monitoring data acquired in the field often exhibit significant non-stationarity and contain outliers due to
environmental interference and other factors, posing severe challenges to subsequent data analysis. Traditional outlier detection methods
often suffer from low accuracy and high false-positive rates when processing non-stationary signals, owing to interference from trend and
periodic components. To address this issue, this study proposes a joint data correction framework based on Variational Mode
Decomposition (VMD) and the Isolation Forest algorithm. The proposed method first utilizes the adaptive decomposition capability of
VMD to decompose the original non-stationary signal into a series of Intrinsic Mode Functions (IMFs). The first component (IMF1) is
extracted as the macroscopic trend of the signal, achieving efficient signal detrending. Subsequently, the Isolation Forest algorithm is
applied to the detrended residual signal to accurately identify and locate outliers. Finally, linear interpolation is employed to correct the
identified outliers. To validate the effectiveness of the proposed method, a synthetic dataset comprising trend, multi-periodic oscillations,
and noise was constructed. Comparative experimental results demonstrate that the proposed VMD-Isolation Forest framework
significantly enhances the accuracy and robustness of outlier detection compared to the direct application of the 3¢ rule or the Isolation
Forest algorithm. It effectively corrects anomalous disturbances while maximally preserving the intrinsic dynamic characteristics of the
original signal. This research provides an efficient and reliable preprocessing paradigm for non-stationary SHM data, laying a solid data
foundation for subsequent high-precision structural damage identification and performance prediction models.

Keywords: Structural Health Monitoring (SHM), Outlier Detection, Variational Mode Decomposition (VMD), Isolation Forest,
Non-stationary Signal, Data Preprocessing.

1. Introduction compromises the reliability of its decomposition results
(Huang, Shen et al. 1998). For instance, when processing

Structural Health Monitoring (SHM) is a core technology for ~ signals containing high-frequency transient noise, EMD is
ensuring the operational safety of critical infrastructure. By ~ prone to generating spurious modal components, which can
collecting real-time dynamic response data of structures (e.g., 1ead to a misjudgment rate of over 30% in subsequent
stress, vibration, and displacement), SHM provides a crucial  structural damage identification (Lei, Lin et al. 2013).

basis for assessing the evolution of structural damage and

predicting remaining service life (Farrar and Worden 2012).  To overcome these limitations, Dragomiretskiy et al. (2014)
With the rapid development of complex engineering projects  introduced a novel signal processing model called Variational
such as large-scale bridges and long-span spatial structures, ~Mode Decomposition (VMD), which features adaptivity,
traditional monitoring methods relying on manual inspection quasi-orthogonality, and a completely non-recursive nature.
and preset threshold alarms are no longer adequate for modern ~ Its core idea is to transform the complex signal decomposition
engineering applications due to their inherent limitations in ~ process into a mathematical problem of finding the optimal
monitoring accuracy and timeliness (Giordano, Quga et al. ~ solution to an unconstrained variational —problem.
2023, Qi, Hou et al. 2024). In this context, efficient Consequently, it is frequently applied to the analysis and
decomposition theories and precise modeling methods for ~ Pprocessing of non-stationary signals (Li, Liu et al. 2022). Li et
non-stationary signals have become central research topics in al. (Li, Zou et al. 2023) proposed a progressive decomposition

the SHM field (Dong, Li et al. 2010, Vazirizade, Bakhshi etal. ~ and double-screening strategy based on VMD to enhance the
2018, Bisheh and Amiri 2023). extraction of weak fault features in machinery, demonstrating

its ability to accurately identify early mechanical faults even

Early signal analysis methods primarily relied on the Fourier ~ under noise interference, thus providing new insight.s. for
Transform. However, this method is only applicable to ~ complex SHM. Ma et al. (Ma, Wang et al. 2022) utilized
stationary signals and struggles to effectively capture and ~VMD to extract multi-scale features from non-stationary load
analyze  non-stationary  signals  with  time-varying signals in power systems and combined it with a Recurrent
characteristics.  Although Wavelet Analysis partially ~Neural Network (RNN) for classification, achieving an
addresses this issue through its multi-scale time-frequency identification accuracy of 89.8% on a dataset of 200,000 users.
decomposition capabilities, the selection of its basis functions ~ Du (Du 20.22) combined VMD with LSTM for damage
is highly dependent on a priori knowledge, and it suffers from prefhc'tlpn m COHCT?'@ .frames and 1opg-§pan structures,
inherent drawbacks such as energy leakage (Mallat 2008). ~ Optimizing the sensitivity and generalization of damage
Subsequently, the Empirical Mode Decomposition (EMD)  identification by decomposing structural response signals
method, proposed by Huang et al. (1998), became a  With VMD and inputting the multi-frequency features into an
mainstream technique in the field due to its excellent adaptive =~ LSTM network.

properties. However, the mode mixing phenomenon inherent

in EMD—where frequency components of different physical ~ Due to the susceptibility of structures to seasonal climate and
significance are coupled within the same mode—severely environmental damage, SHM data often contain a significant
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number of outliers, which adversely affect subsequent data
modeling and prediction. Traditional statistical methods for
outlier detection, such as the 3o rule and box plot analysis, are
widely used due to their simplicity, but they are limited in
their effectiveness at identifying complex patterns of
anomalies or non-Gaussian noise. As research has progressed,
machine learning-based anomaly detection methods,
including clustering-based algorithms (e.g., K-means),
classification-based algorithms (e.g., Support Vector Machine,
SVM), and reconstruction error-based algorithms (e.g.,
Principal Component Analysis, PCA; Autoencoder), have
shown better adaptability in SHM data anomaly identification.
Recently, deep learning anomaly detection algorithms
specifically designed for time-series data, such as
LSTM-based models, have also been applied in the SHM
domain. Furthermore, signal decomposition techniques like
VMD can assist in identifying anomalous components by
analyzing the characteristics (e.g., energy, frequency
mutations) of the decomposed Intrinsic Mode Functions
(IMFs).

To address the aforementioned issues, this study designs a
VMD-based outlier detection method: (1) Decompose the
sensor-collected data using VMD and extract the results; (2)
Use the resulting IMF1 component as the data's trend
component and subtract it from the original data to obtain the
detrended data; (3) Perform outlier detection on the detrended
data, mark the detected outliers as missing values, and then
impute them.

2. Data Preprocessing Workflow

Given the potential for outliers in monitoring data, and since
sensor-collected data are typically non-stationary time series
containing significant trend and complex periodic
components, the performance of traditional anomaly detection
methods is easily compromised when applied directly to such
data. This interference can lead to a significant increase in
detection errors. Therefore, this study proposes a strategy that
combines VMD for data detrending with various outlier
detection methods.

The strategy first decomposes the original signal x(¢) using
VMD to obtain a set of Intrinsic Mode Functions (IMFs)
{IMF;(t)}-;. The first IMF component, IMF]1, is selected as
the low-frequency trend of the original signal, primarily
because IMF1 can effectively represent the inherent
frequency information and long-term evolutionary trend of
the structural response. Subsequently, this low-frequency
trend is separated from the original signal using the following
equation to obtain the detrended signal Xgetrended(t):

Xerena(t) = IMF;(t)s Xgetrendea(t) = X(t) — Xtrena(t)
(1)

The Isolation Forest algorithm (Liu, Ting et al. 2008) and the
36 rule are then applied separately to the detrended signal
Xdetrended(t) to detect outliers. Once an outlier is detected, it is
temporarily marked as a missing value, which is subsequently
imputed. This process is repeated until no new outliers are
detected or a preset iteration limit is reached.

For the data points marked as missing values, this study
employs the linear interpolation method for imputation (Blu,

Thevenaz et al. 2004). The mathematical expression is as
follows:

Y(tnext)—Y (tprev)

tnext—tprev

y(t) = y(tprev) + : (t - tprev) (2)
where tprev and tnex: are the timestamps of the nearest valid data
points before and after the missing point, respectively. This
method effectively preserves the local trend characteristics of
the original data and, compared to traditional mean-filling
methods, can more effectively suppress the bias that may be

introduced by smoothing.

3. Experiment
3.1 Data Characteristics

To validate the effectiveness of the proposed method, this
study constructed a synthetic dataset with non-stationary
characteristics, including a trend component, multi-frequency
periodic oscillation components, and Gaussian noise (Bandara,
Hyndman et al. 2021). The synthetic dataset simulates the
monitoring signals from 10 virtual stress sensors over 30
consecutive days, with a sampling interval of 30 minutes. The
mathematical expression for the synthetic time-series data is
defined as follows:

Xe(@) =T + S, (D) + YR, )

where the periodic term S(i) is a linear superposition of three
Fourier series with different periods, and each Fourier series
contains 5 pairs of random coefficients that are independently
and identically distributed according to a standard normal
distribution. The residual term R consists of Gaussian noise
with a mean of 0 and a standard deviation of 1, simulating
random interference during the measurement process. A
weight of y =0.2 to this term. The trend term Tt is defined by a
quadratic polynomial:

T, = Ny(t +5 (N, = 1))° ©)
where N; and N, are independent random variables following
a N(0,1) distribution.

To further test the robustness and effectiveness of the
proposed data preprocessing method, a certain proportion and
magnitude of outliers were intentionally injected into the
generated synthetic data. Figure 1 visually displays the
original time-series data and the distribution of outliers for
three representative sensors (numbered 1-3) selected from the
10 virtual sensors. It can be clearly observed from the figure
that these original signals exhibit significant non-stationarity,
and the complex trend and multi-frequency periodic
oscillation components are highly coupled.
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Figure 1: Original time-series plots for three sensors (Sensor
1, Sensor 2, Sensor 3)

3.2 Outlier Correction

Following the preprocessing workflow described in Section 2,
the original signal x(t) is first decomposed using VMD. After
decomposition, the low-frequency first intrinsic mode
function, IMF1, is extracted as the low-frequency trend
component Xgend(t) (Figure 2). Subsequently, this trend
component is subtracted from the original signal to
reconstruct the detrended signal Xdetrended(t) (Figure 3). The
Isolation Forest algorithm and the 3o algorithm are then
applied separately to the detrended signal Xdetrended(t) for
outlier detection. By comparing the original signals in Figure
1 with the detrended signals in Figure 3, it can be observed
that the VMD detrending process effectively eliminates the
prominent trend interference in the original data. This
preprocessing step allows subsequent anomaly detection to
focus more accurately on the local random fluctuation
characteristics of the signal itself, rather than being misled by
trend variations.
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Figure 2: Low-frequency trend components Xiend(t) (IMF1)
for three sensors
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Figure 3: Detrended signals Xdetrended(t) for three sensors

3.3 Preprocessing Results and Comparison

To quantitatively evaluate the effectiveness of the proposed
joint preprocessing framework, this section provides a
comparative analysis of different preprocessing strategies.
The primary objectives are to verify the necessity of
VMD-based detrending for improving outlier detection
accuracy and to compare the performance of different
detection algorithms (Isolation Forest vs. 3¢ rule) on the
detrended signals.

Figures 4(a)-(c) show a comparison between the data
corrected by our proposed VMD-Isolation Forest joint
preprocessing method and the original data. It is clearly
observable that the abrupt changes, spikes, and other
anomalies present in the original signal have been effectively
identified and smoothed. Crucially, this correction process
accurately preserves the overall long-term trend and intrinsic
periodic oscillation features of the signal while eliminating
local anomalous disturbances, without introducing significant
signal distortion. This preliminarily validates the superior
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balance of the joint method between effective data anomaly
repair and signal fidelity preservation.
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Figure 4: Comparison of original data with data corrected by
the VMD-Isolation Forest method

To further highlight the advantages of the proposed method,
Figures 5(a)-(c) display the results of the VMD-36 method.
Although this method also corrects some outliers, its
effectiveness is slightly inferior to the VMD-Isolation Forest
method, especially when dealing with boundary or
asymmetrically distributed anomalies, where it may exhibit
missed detections. This indicates that for residual sequences
presenting complex non-Gaussian distributions after
detrending, the unsupervised learning-based Isolation Forest
algorithm possesses greater robustness and adaptability than
the 30 rule, which relies on the assumption of a normal
distribution.
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Figure 5: Comparison of original data with data corrected by

the VMD-36 method

Furthermore, to demonstrate the necessity of VMD
detrending as the primary preprocessing step, we conducted a
control experiment by directly applying outlier detection
algorithms to the original signals. Figures 6(a)-(c) show the
results of directly using the Isolation Forest algorithm. Due to
the strong non-stationarity of the original signal, its inherent
trend and periodic components severely interfered with the
algorithm's density estimation. The results show that this
method not only failed to identify all anomalies (as shown in
Figure 6(b)) but also incorrectly classified some normal data
points as outliers during the initial phase of the signal due to
rapid trend changes (as shown in Figures 6(a) and 6(c)),
leading to "false positives."

Figures 7(a)-(c) display the results of directly applying the 30
rule, which performed even more poorly. The trend and
periodic components of the original signal "contaminated" the
overall mean and variance, causing the calculated outlier
detection threshold to be excessively large. Consequently, this
method failed to identify almost any of the true outliers,
proving that without detrending, traditional statistical
methods are essentially ineffective for anomaly detection in
non-stationary time-series data.
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Figure 6: Comparison of original data with data corrected
directly by the Isolation Forest method
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Figure 7: Comparison of original data with data corrected
directly by the 3o rule

In summary, the analysis of the four sets of comparative
experiments leads to the following conclusions:

1) VMD Detrending is a Critical Step: Performing outlier

detection directly on non-stationary raw data, regardless of
the algorithm used, is highly susceptible to interference from
trend and periodic components, leading to a significant
decline in detection performance, or even failure.

2) Isolation Forest Algorithm Exhibits Superior
Performance: After VMD detrending, the Isolation Forest
algorithm demonstrates more accurate and robust
identification of outliers in complex data compared to the
traditional 3o rule.

3) Therefore, the VMD-Isolation Forest joint preprocessing
framework proposed in this study can most effectively correct
anomalies in SHM monitoring data, providing a high-quality
data foundation for subsequent high-precision time-series
prediction models.3.

4. Conclusion and Outlook
4.1 Conclusion

To address the prevalent issues of non-stationarity and outlier
contamination in structural health monitoring data, this study
has proposed and validated a novel data preprocessing
framework that combines Variational Mode Decomposition
(VMD) and the Isolation Forest algorithm. Through
systematic experimental analysis on synthetic time-series data
containing complex trends, periodic components, and injected
anomalies, the following main conclusions are drawn:

1) Necessity and Effectiveness of VMD Detrending: The
experimental results unequivocally confirm that applying
outlier detection algorithms (whether statistical or machine
learning-based) directly to non-stationary raw signals leads to
performance degradation due to severe interference from the
signal's intrinsic trend and periodic components, resulting in
numerous missed detections and false positives. Extracting
and separating the signal's low-frequency trend component
via VMD effectively eliminates this interference and is a
critical prerequisite for achieving accurate outlier detection.

2) Superiority of the Isolation Forest Algorithm: When
detecting anomalies in the detrended residual signal, the
unsupervised learning-based Isolation Forest algorithm
demonstrates greater robustness and higher accuracy
compared to the traditional 3¢ rule. Particularly in handling
asymmetric or complexly distributed anomalies, Isolation
Forest can more effectively identify true outliers, thereby
enhancing the reliability of the correction.

3) Comprehensive Performance of the Joint Framework:
The proposed VMD-Isolation Forest joint preprocessing
framework successfully integrates the advantages of both
methods. It not only accurately identifies and smooths abrupt
changes and spikes in the data but also preserves the
long-term trends and periodic oscillation features, which are
crucial for structural analysis, thus avoiding signal distortion
during the correction process

In summary, the method proposed in this study provides an
efficient and reliable data-cleaning tool for the SHM field,
capable of significantly improving the quality of monitoring
data and providing high-quality input for subsequent
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advanced analysis tasks such as time-series forecasting,
damage identification, and remaining service life assessment.

4.2 Outlook

Although this study has validated the effectiveness of the
proposed method using synthetic data, there is still room for
further in-depth research and expansion. Future work can be
pursued in the following areas:

1) Validation and Application on Real Engineering Data:
Apply the method to long-term monitoring data from real
engineering structures (e.g., large bridges, high-rise buildings,
or offshore platforms). In real-world scenarios, data
characteristics are more complex, potentially containing
various types of noise and anomalies from different sources.
This will serve as the ultimate test of the method's
generalization ability and robustness.

2) Adaptive Optimization of VMD Parameters: The
decomposition performance of VMD depends on the selection
of key parameters such as the number of modes (K) and the
penalty factor (o). Currently, these parameters are often set
based on experience. Future research could explore the
integration of intelligent optimization algorithms (e.g.,
Genetic  Algorithms, Particle Swarm Optimization, or
Bayesian Optimization) to achieve adaptive parameter tuning,
thereby further enhancing the accuracy and automation of
signal decomposition.

3) Exploration of Fusion with Other Anomaly Detection
Algorithms: While Isolation Forest has shown excellent
performance, it is worthwhile to explore combining VMD
detrending with other advanced deep learning anomaly
detection models (e.g., models based on Autoencoders or
Long Short-Term Memory networks - LSTM) to assess
whether further performance gains can be achieved in specific
application scenarios.

4) Quantitative Evaluation of Impact on Downstream
Analysis Tasks: Systematically investigate the improvement
in the accuracy of specific downstream tasks (e.g., structural
modal parameter identification, damage localization and
quantification, crack propagation prediction) using data
preprocessed by this method. Through quantitative analysis,
the practical value of this preprocessing method within the
entire SHM workflow can be more comprehensively revealed.
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