Review on Research Progress of Geopolymer Concrete

Boby Joseph Thadathil¹, Shubham Rajiv Girdhar²

¹Research Scholar, Civil Engineering, Osmania University, Hyderabad (India)

²Former Professor, Department of Civil Engineering, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, India

Abstract: Geopolymer concrete has emerged as a promising alternative to traditional Portland cement - based concrete due to its reduced environmental impact, improved mechanical properties, and potential for sustainable construction practices. This paper presents a comprehensive review of recent advancements in geopolymer concrete technology, focusing on key research findings, innovative materials, and novel applications. A systematic analysis of 40 selected research articles is conducted to elucidate the progress made in the field, covering topics such as material composition, mechanical properties, durability, sustainability, and structural performance. The review highlights the diverse range of materials used in geopolymer concrete, including fly ash, metakaolin, recycled aggregates, and various fibers. Furthermore, it examines the influence of different additives, curing methods, and mix design parameters on the properties of geopolymer concrete. The paper also discusses emerging trends such as the incorporation of hybrid fibers, utilization of waste materials, and development of high - performance geopolymer composites. Finally, future research directions and potential challenges in the widespread adoption of geopolymer concrete are outlined, aiming to contribute to the advancement of sustainable construction practices

Keywords: Geopolymer Concrete, Fly Ash, Metakaolin, GGBS, Recycled Aggregates, Fiber Reinforcement, Sustainability, Mechanical Properties, Durability, Structural Performance

1. Introduction

In recent years, there has been growing interest in geopolymer concrete as an environmentally friendly and sustainable alternative to conventional Portland cement - based concrete. Geopolymer concrete is produced by aluminosilicate materials with alkaline solutions, resulting in a binder that exhibits similar or superior properties to traditional cementitious materials. This paper provides a comprehensive review of recent research endeavors aimed at advancing the understanding and application of geopolymer concrete technology.

2. Materials & Methods

A systematic literature review was conducted to identify relevant research articles on geopolymer concrete published between 2015 and 2022. A total of 40 articles were selected based on their significance in contributing to the understanding of geopolymer concrete materials, properties, and applications. The selected articles were analyzed and synthesized to extract key findings and insights into the advancements in geopolymer concrete technology.

ISSN: 2322-0856

3. Literature Review

Sl. No.	Author Name	Year of Publication	Title	Materials Used	Observations & Findings
1	M. Sanjay Kumar, Dr. K. U. Muthu, Mr. Anil Sagar S, and Ms. Deepa. T Yadav	2018	Experimental Investigation of Mechanical Properties of Geopolymer Concrete with GGBS and Hybrid Fibers	Geopolymer Concrete, GGBS, Hybrid Fibers	Explored the mechanical properties of geopolymer concrete enhanced with GGBS and hybrid fibers, providing insights into its potential for structural applications.
2	Sha N. A & Khandare M. A	2018	Comparative Study of Strength and Cost Fiber Reinforced Geopolymer Concrete and Conventional OPC Concrete	Geopolymer Concrete, OPC Concrete, Fibers	Conducted a comparative analysis between fiber - reinforced geopolymer concrete and conventional OPC concrete, evaluating their strength and cost - effectiveness.
3	Rekha K. P & Hazeena R	2014	Strength and Durability of Fiber Reinforced Geopolymer Concrete	Geopolymer Concrete, Fibers	Investigated the strength and durability characteristics of fiber - reinforced geopolymer concrete, highlighting its potential for sustainable construction.
4	Rahul S, Ramesh Mithanthaya, and Sriram P. Marathe	2017	Study of Strength Characteristics of Geopolymer Concrete Using Ceramic Aggregates as Coarse Aggregates with Addition of Polypropylene Fibers	Geopolymer Concrete, Ceramic Aggregates, Polypropylene Fibers	Explored the strength properties of geopolymer concrete incorporating ceramic aggregates and polypropylene fibers, providing insights into its performance.
5	B K Smitha, Usha. K. N	2016	An Experimental Study on Flexural Behavior of Fiber	Geopolymer Concrete, Fibers	Examined the flexural behavior of fiber - reinforced geopolymer concrete slabs,

			Reinforced Geopolymer Concrete Slabs		assessing their structural performance and potential applications.
6	Hathi Ram Gugulothu, B. Sheshasrinivas, and D. Rama Shesu	2019	Experimental Evaluation of the Split Tensile Strength of Combined Fiber Reinforced Geopolymer Concrete	Geopolymer Concrete, Fibers	Investigated the split tensile strength of combined fiber - reinforced geopolymer concrete, providing insights into its mechanical properties and potential applications.
7	J E Adejo, E T ka'Ase, D. D Daheer, and M. M. Garba	2017	Durability Properties of Metakaoline Based Geopolymer Concrete Made with Recycled Concrete Aggregate	Geopolymer Concrete, Metakaoline, Recycled Concrete Aggregate	Assessed the durability properties of geopolymer concrete incorporating metakaoline and recycled concrete aggregate, addressing sustainability concerns.
8	Faiz Uddin Ahmedshaik	2016	Mechanical and Durability Properties of Fly Ash Geopolymer Concrete Containing Recycled Coarse Aggregates	Geopolymer Concrete, Fly Ash, Recycled Coarse Aggregates	Explored the mechanical and durability properties of fly ash - based geopolymer concrete incorporating recycled coarse aggregates, addressing sustainability concerns.
9	M. K. Thangamanibindu and Dr. DS. RamaChandramurty	2015	An Experimental Investigation on the Mechanical Properties of Geopolymer Concrete Partially Replaced with Recycled Coarse Aggregates	Geopolymer Concrete, Recycled Coarse Aggregates	Investigated the mechanical properties of geopolymer concrete with partial replacement of coarse aggregates, addressing sustainability and resource optimization.
10	A. Talib, M. Y. Khan, A. Baqi, M. K. Vakil	2016	Effects of Polypropylene Fiber on Strength of Geopolymer Concrete	Geopolymer Concrete, Polypropylene Fiber	Explored the effects of polypropylene fiber on the strength properties of geopolymer concrete, providing insights into fiber reinforcement techniques.
11	Xie J, Chen M, Wang J, Fang C, Zhang B, Liu F	2019	Coupling Effects of Recycled Aggregate and GGBS/Metakaolin on Physicochemical Properties of Geopolymer Concrete	Geopolymer Concrete, Recycled Aggregate, GGBS, Metakaolin	Investigated the physicochemical properties of geopolymer concrete incorporating recycled aggregate and GGBS/metakaolin, addressing sustainable material utilization.
12	S. Gambo, K. Ibrahim, A. Aliyu, A. G. Ibrahim, and Abdulsalam	2020	Performance of Metakaolin - Based Geopolymer Concrete at Elevated Temperature	Metakaolin, Geopolymer Concrete	Assessed the performance of metakaolin - based geopolymer concrete under elevated temperature conditions, addressing its suitability for high - temperature applications.
13	A. Laxmi, Deepak, Dr. T. V. S, and Vara Lakshmi	2019	Mechanical Properties of Geopolymer Concrete with Fly Ash and Metakaolin	Geopolymer Concrete, Fly Ash, Metakaolin	Examined the mechanical properties of geopolymer concrete incorporating fly ash and metakaolin, addressing its potential for sustainable construction.
14	Mohammed Hosni, Ibrahim Abdel - Latif, and Fatma Ahmed Shaker	2020	Compressive Strength Characteristics of Fly Ash and Locally Processed Metakaolin Based Geopolymer Concrete	Geopolymer Concrete, Fly Ash, Metakaolin	Investigated the compressive strength characteristics of geopolymer concrete incorporating fly ash and locally processed metakaolin, addressing material performance.
15	S. Balamurugan	2018	Experimental Investigation of Geo - Polymer Concrete Contains Recycled Aggregate	Geopolymer Concrete, Recycled Aggregate	Explored the properties of geopolymer concrete containing recycled aggregate, addressing sustainable material utilization and resource optimization.
16	Babu. S, Fazal. N, Genie Beneacos. D, M. Murugulingam, and M. Kirubakaran	2017	Experimental Investigation on Strength Characteristics of Geopolymer Concrete with Partial Replacement of Coarse Aggregate with Recycled Aggregate	Geopolymer Concrete, Recycled Aggregate	Investigated the strength characteristics of geopolymer concrete with partial replacement of coarse aggregate with recycled aggregate, addressing sustainability concerns.
17	Anuar K. A, Ridzuan A. R. M, Ismail S	2011	Strength Characteristics of	Concrete Aggregate	Assessed the strength characteristics of geopolymer concrete containing recycled concrete aggregate, addressing sustainable material utilization.
18	Veerabhadrayya. M, Vijay. S	2018	Study on Metakaolin and Fly Ash Based Geopolymer Concrete	Geopolymer Concrete, Metakaolin, Fly Ash	Conducted a study on geopolymer concrete incorporating metakaolin and fly ash, providing insights into its material properties and performance.
19	Mohamed Aquibjaveed, M. Veerendra Kumar, and Dr. H. Narendra	2015	Studies on Mix Design of Sustainable Geopolymer Concrete	Geopolymer Concrete	Explored the mix design of sustainable geopolymer concrete, addressing material optimization for environmental and economic sustainability.

20	A. Joshua Deniel, S. Sivakamasundari, and D. Abhilash	2017	Comparative Study on Behavior of Geopolymer Concrete with Hybrid Fibers under Static Cyclic Loading	Geopolymer Concrete, Hybrid Fibers	Conducted a comparative study on the behavior of geopolymer concrete with hybrid fibers under static cyclic loading, providing insights into its structural performance.
21	Rakesh Kumar Gupta, Dr. Rajeev Chandak	2018	An Experimental Study on Low - Calcium Flyash and Metakaolin Based Geo - Polymer Concrete	Fly Ash, Metakaolin, Geopolymer Concrete	Investigated the properties of low - calcium fly ash and metakaolin - based geopolymer concrete, providing insights into its material characteristics and potential applications.
22	A. Talib, M. Y. Khan, A. Baqi, M. K. Vakil	2016	Effects of Polypropylene Fibre on Strength of Geopolymer Concrete	Geopolymer Concrete, Polypropylene Fiber	Explored the influence of polypropylene fiber on the strength properties of geopolymer concrete, addressing reinforcement techniques and material performance.
23	Abdulrahman Albidah, Mohammed Alghannam, Husain Abbas, Tarek Almusallam, Yousef Al - Salloum	2021	Characteristics of Metakaolin - Based Geopolymer Concrete for Different Mix Design Parameters	Metakaolin, Geopolymer Concrete, Mix Design Parameters	Investigated the characteristics of metakaolin - based geopolymer concrete for various mix design parameters, providing insights into material optimization and performance.
24	Marcin Górski, Natalia Wielgus, Krzysztof Loska, Michał Kozioł, Marcin Landrat, Waldemar Scierski, Krzysztof Piko	2021	Characteristics of Metakaolin - Based Geopolymer with Cathode Ray Tube Glass	Metakaolin, Geopolymer Concrete, Cathode Ray Tube Glass	Explored the characteristics of metakaolin - based geopolymer concrete incorporating cathode ray tube glass, addressing material properties and potential applications.
25	Zoi G. Ralli, Stavroula J. Pantazopoulou	2020	State of the Art on Geopolymer Concrete	Geopolymer Concrete	Reviewed the current state of research and advancements in geopolymer concrete technology, summarizing key findings and trends in the field.
26	Faris Matalkah, Ruba Aqel, Ayman Ababneh	2020	Enhancement of the Mechanical Properties of Kaolin Geopolymer Using Sodium Hydroxide and Calcium Oxide	Kaolin, Sodium Hydroxide, Calcium Oxide, Geopolymer Concrete	Explored methods to enhance the mechanical properties of kaolin - based geopolymer concrete using sodium hydroxide and calcium oxide, addressing material performance.
27	Karri Srinivas, M. Padmakar, B. Barhmaiah, Sathi Kranthi Vijaya	2020	Effect of Alkaline Activators on Strength Properties of Metakaolin and Fly Ash Based Geopolymer Concrete	Metakaolin, Fly Ash, Alkaline Activators, Geopolymer Concrete	Investigated the effect of alkaline activators on the strength properties of metakaolin and fly ash - based geopolymer concrete, addressing material optimization and performance.
28	G. Asha Lakshmi, P. Sai Pravallika	2019	Strength and Durability Properties of Concrete with Partial Replacement of Cement with Metakaolin and Marble Dust	Metakaolin, Marble Dust, Concrete	Explored the strength and durability properties of concrete with partial replacement of cement with metakaolin and marble dust, addressing material sustainability and performance.
29	Wasan I. Khalil, Qais J. Frayyeh, Haider T. Abed	2019	Properties of Metakaolin Based Pervious Geopolymer Concrete	Metakaolin, Geopolymer Concrete	Investigated the properties of metakaolin - based pervious geopolymer concrete, addressing its potential for sustainable and permeable pavement applications.
30	Pratyush Kumar, Chaitanya Pankar, Divyank Manish, Santhi A. S	2018	Mechanical and Microstructural Properties of Geopolymer Concrete with GGBS and Metakaolin	GGBS, Metakaolin, Geopolymer Concrete	Explored the mechanical and microstructural properties of geopolymer concrete incorporating GGBS and metakaolin, providing insights into its material characteristics and performance.
31	Jian - Tong Ding, Zongjin Li	2018	Effects of Metakaolin and Silica Fume on Properties of Concrete	Metakaolin, Silica Fume, Concrete	Investigated the effects of metakaolin and silica fume on the properties of concrete, addressing material performance and potential applications.
32	G. Adisekhar, B. Sarath Chandra Kumar	2018	Effect on Flexural Strength of Reinforced Geopolymer Concrete Beams by Using GGBS, Metakaolin	GGBS, Metakaolin, Geopolymer Concrete	Assessed the effect of GGBS and metakaolin on the flexural strength of reinforced geopolymer concrete beams, addressing material optimization for structural applications.
33	N. Nikoloutsopoulos, A. Sotiropoulou, G. Kakali, S. Tsivilis	2017	The Effect of Solid/Liquid Ratio on Setting Time, Workability and Compressive Strength of Fly Ash Based Geopolymers	Fly Ash, Geopolymers	Investigated the effect of solid/liquid ratio on the setting time, workability, and compressive strength of fly ash - based geopolymers, addressing material behavior and performance.

34	B. Sarath Chandra Kumar, K. Ramesh	2017	An Experimental Study on Metakaolin and GGBS Based Geopolymer Concrete	Metakaolin, GGBS, Geopolymer Concrete	Conducted an experimental study on metakaolin and GGBS - based geopolymer concrete, providing insights into its material properties and performance.
35	R. A. S´a Ribeiro, M. G. S´a Ribeiro, W. M. Kriven	2017	A Review of Particle - and Fiber - Reinforced Metakaolin - Based Geopolymer Composites	Metakaolin, Geopolymer Composites	Reviewed the particle - and fiber - reinforced metakaolin - based geopolymer composites, summarizing key findings and advancements in composite materials.
36	Pendyala Chanakya, Diptikar Behra	2016	Experimental Study on Compressive Strength of Concrete by Partial Replacement of Cement with Metakaolin	Metakaolin, Concrete	Conducted an experimental study on the compressive strength of concrete by partial replacement of cement with metakaolin, addressing material sustainability and performance.
37	Basil Salah Al - Shathr, Tareq Saleh Al - Attar	2016	Effect of Curing System on Metakaolin Based Geopolymer Concrete	Metakaolin, Geopolymer Concrete	Investigated the effect of curing system on metakaolin - based geopolymer concrete, addressing material curing techniques and performance.
38	K. Chandra Padmakar, B. Sharat Chandra Kumar	2017	An Experimental Study on Metakaolin and GGBS Based Geopolymer Concrete	Metakaolin, GGBS, Geopolymer Concrete	Conducted an experimental study on metakaolin and GGBS - based geopolymer concrete, providing insights into its material properties and performance.
39	Fatheali A. Shilar, Sharanabasava V. Ganachari, Veerabhadragouda B. Patil, Kottakkaran Sooppy Nisar	2022	Evaluation of Structural Performances of Metakaolin Based Geopolymer Concrete	Metakaolin, Geopolymer Concrete	Evaluated the structural performances of metakaolin - based geopolymer concrete, providing insights into its mechanical properties and potential structural applications.
40	A. R. R. Kalaiyarrasi, P. Partheeban, V. Muthupandi	2018	Metakaolin Geopolymer Composite Concrete with High Durability	Metakaolin, Geopolymer Concrete	Explored the properties of metakaolin geopolymer composite concrete, addressing its high durability and potential for sustainable construction applications.

4. Results & Discussion

The review of selected articles revealed significant progress in the development and characterization of geopolymer concrete. Various materials have been investigated as precursors for geopolymerization, including fly ash, metakaolin, slag, and recycled aggregates. Researchers have explored the influence of different factors such as curing methods, activator types, and mix proportions on the mechanical properties and durability of geopolymer concrete. Additionally, fiber reinforcement has been studied extensively to enhance the tensile strength, flexural behavior, and fracture toughness of geopolymer composites. Novel applications of geopolymer concrete, such as pervious pavements, precast elements, and high - temperature resistant structures, have also been explored.

5. Conclusion

The review underscores the significant advancements achieved in geopolymer concrete technology, demonstrating its potential to revolutionize the construction industry towards a more sustainable future. Despite the progress made, several challenges remain, including standardization of mix design procedures, optimization of curing regimes, and large - scale implementation of geopolymer concrete in infrastructure projects. Future research efforts should focus on addressing these challenges and further expanding the scope of geopolymer concrete applications through innovative materials and advanced manufacturing techniques.

References

[1] M. Sanjay Kumar, Dr. K. U. Muthu, Mr. Anil Sagar S, and Ms. Deepa. T Yadav. (2018). "Experimental Investigation of Mechanical Properties of Geopolymer Concrete with GGBS and Hybrid Fibers." International Journal of Applied Engineering Research, 13 (7), 292 - 298.

- [2] Sha N. A & Khandare M. A. (2018). "Comparative Study of Strength and Cost Fiber Reinforced Geopolymer Concrete and Conventional OPC Concrete." IRJET, 5 (6), 1724 1729.
- [3] Rekha K. P & Hazeena R. (2014). "Strength and Durability of Fiber Reinforced Geopolymer Concrete." International Journal of Science & Engineering Research, 5 (7), 412 416.
- [4] Rahul S, Ramesh Mithanthaya, and Sriram P. Marathe. (2017). "Study of Strength Characteristics of Geopolymer Concrete Using Ceramic Aggregates as Coarse Aggregates with Addition of Polypropylene Fibers." International Journal of Current Engineering and Scientific Research, 4 (5), 42 46.
- [5] B K Smitha, Usha. K. N. (2016). "An Experimental Study on Flexural Behavior of Fiber Reinforced Geopolymer Concrete Slabs." International Journal of Research & Technology (IJERT), 5 (8), 178 182.
- [6] Hathi Ram Gugulothu, B. Sheshasrinivas, and D. Rama Shesu. (2019). "Experimental Evaluation of the Split Tensile Strength of Combined Fiber Reinforced Geopolymer Concrete. " International Journal of

- Technical Innovation in Modern Engineering & Sciences, 5 (1), 142 149.
- [7] J E Adejo, E T ka'Ase, D. D Daheer, and M. M. Garba. (2017). "Durability Properties of Metakaoline Based Geopolymer Concrete Made with Recycled Concrete Aggregate." Vol.1, No 1&2, October, 230 237.
- [8] Faiz Uddin Ahmedshaik. (2016). "Mechanical and Durability Properties of Fly Ash Geopolymer Concrete Containing Recycled Coarse Aggregates. "
 International Journal of Sustainable Built Environment, 5, 277 287.
- [9] M. K. Thangamanibindu and Dr. DS. RamaChandramurty. (2015). "An Experimental Investigation on the Mechanical Properties of Geopolymer Concrete Partially Replaced with Recycled Coarse Aggregates." International Journal of Scientific & Engineering Research, 6 (8), 311 - 323.
- [10] A. Talib, M. Y. Khan, A. Baqi, M. K. Vakil. (2016).
 "Effects of Polypropylene Fiber on Strength of Geopolymer Concrete. "DOI: 10.13140/RG.2.219402.77763.
- [11] Xie J, Chen M, Wang J, Fang C, Zhang B, Liu F. (2019). "Coupling Effects of Recycled Aggregate and GGBS/Metakaolin on Physicochemical Properties of Geopolymer Concrete. " Construction and Building Materials, 226, 354 359.
- [12] S. Gambo, K. Ibrahim, A. Aliyu, A. G. Ibrahim, and Abdulsalam. (2020). "Performance of Metakaolin Based Geopolymer Concrete at Elevated Temperature. " Nigerian Journal of Technology, 39, July.
- [13] A. Laxmi, Deepak, Dr. T. V. S, and Vara Lakshmi. (2019). "Mechanical Properties of Geopolymer Concrete with Fly Ash and Metakaolin." IJEAT, 9 (1), October.
- [14] Mohammed Hosni, Ibrahim Abdel Latif, and Fatma Ahmed Shaker. (2020). "Compressive Strength Characteristics of Fly Ash and Locally Processed Metakaolin Based Geopolymer Concrete. " IJSTR, 9 (08), August.
- [15] S. Balamurugan. (2018). "Experimental Investigation of Geo Polymer Concrete Contains Recycled Aggregate." IJSR, 7 (8), August.
- [16] Babu. S, Fazal. N, Genie Beneacos. D, M. Murugulingam, and M. Kirubakaran. (2017). "Experimental Investigation on Strength Characteristics of Geopolymer Concrete with Partial Replacement of Coarse Aggregate with Recycled Aggregate." IJIRSET, 6 (3), March.
- [17] Anuar K. A, Ridzuan A. R. M, Ismail S. (2011). "Strength Characteristics of Geopolymer Concrete Containing Recycled Concrete Aggregate." IJCEE IJENS, 11, February.
- [18] Veerabhadrayya. M, Vijay. S. (2018). "Study on Metakaolin and Fly Ash Based Geopolymer Concrete." IJERT, 7 (4), April.
- [19] Mohamed Aquibjaveed, M. Veerendra Kumar, and Dr. H. Narendra. (2015). "Studies on Mix Design of Sustainable Geopolymer Concrete. " IJIREM, 2 (4), July.
- [20] A. Joshua Deniel, S. Sivakamasundari, and D. Abhilash. (2017). "Comparative Study on Behavior of Geopolymer Concrete with Hybrid Fibers under Static Cyclic Loading." ISPIM, August.

[21] Rakesh Kumar Gupta, Dr. Rajeev Chandak. (2018). "An Experimental Study on Low - Calcium Flyash and Metakaolin Based Geo - Polymer Concrete. " IJTSRD, 2 (6), Sep - Oct.

- [22] A. Talib, M. Y. Khan, A. Baqi, M. K. Vakil. (2016).
 "Effects of Polypropylene Fibre on Strength of Geopolymer Concrete. " Conference Paper, September.
- [23] Abdulrahman Albidah, Mohammed Alghannam, Husain Abbas, Tarek Almusallam, Yousef Al -Salloum. (2021). "Characteristics of Metakaolin -Based Geopolymer Concrete for Different Mix Design Parameters. " Journal of Materials Research and Technology, 13, October.
- [24] Marcin Górski, Natalia Wielgus, Krzysztof Loska, Michał Kozioł, Marcin Landrat, Waldemar Scierski, Krzysztof Piko. (2021). "Characteristics of Metakaolin Based Geopolymer with Cathode Ray Tube Glass."
 Construction and Building Materials, 301, December.
- [25] Zoi G. Ralli, Stavroula J. Pantazopoulou. (2020). "State of the Art on Geopolymer Concrete." Construction and Building Materials, 238, March.
- [26] Faris Matalkah, Ruba Aqel, Ayman Ababneh. (2020). "Enhancement of the Mechanical Properties of Kaolin Geopolymer Using Sodium Hydroxide and Calcium Oxide. " Construction and Building Materials, 247, April.
- [27] Karri Srinivas, M. Padmakar, B. Barhmaiah, Sathi Kranthi Vijaya. (2020). "Effect of Alkaline Activators on Strength Properties of Metakaolin and Fly Ash Based Geopolymer Concrete. " Materials Today: Proceedings, 41, August.
- [28] G. Asha Lakshmi, P. Sai Pravallika. (2019). "Strength and Durability Properties of Concrete with Partial Replacement of Cement with Metakaolin and Marble Dust." International Journal of Civil Engineering and Technology, 10 (3), March.
- [29] Wasan I. Khalil, Qais J. Frayyeh, Haider T. Abed. (2019). "Properties of Metakaolin Based Pervious Geopolymer Concrete." Case Studies in Construction Materials, 11, June.
- [30] Pratyush Kumar, Chaitanya Pankar, Divyank Manish, Santhi A. S. (2018). "Mechanical and Microstructural Properties of Geopolymer Concrete with GGBS and Metakaolin. " Journal of Materials in Civil Engineering, 30 (8), August.
- [31] Jian Tong Ding, Zongjin Li. (2018). "Effects of Metakaolin and Silica Fume on Properties of Concrete." Construction and Building Materials, 171, May.
- [32] G. Adisekhar, B. Sarath Chandra Kumar. (2018).

 "Effect on Flexural Strength of Reinforced Geopolymer Concrete Beams by Using GGBS, Metakaolin. " International Journal of Civil Engineering and Technology, 9 (11), November.
- [33] N. Nikoloutsopoulos, A. Sotiropoulou, G. Kakali, S. Tsivilis. (2017). "The Effect of Solid/Liquid Ratio on Setting Time, Workability and Compressive Strength of Fly Ash Based Geopolymers. " Applied Clay Science, 150, August.
- [34] B. Sarath Chandra Kumar, K. Ramesh. (2017). "An Experimental Study on Metakaolin and GGBS Based Geopolymer Concrete. " International Journal of Science & Research, 6 (6), June.

- [35] R. A. S'a Ribeiro, M. G. S'a Ribeiro, W. M. Kriven. (2017). "A Review of Particle - and Fiber - Reinforced Metakaolin - Based Geopolymer Composites. " Journal of the American Ceramic Society, 100 (10), October.
- [36] Pendyala Chanakya, Diptikar Behra. (2016).
 "Experimental Study on Compressive Strength of Concrete by Partial Replacement of Cement with Metakaolin." International Journal of Engineering Research and Applications, 6 (6), June.
- [37] Basil Salah Al Shathr, Tareq Saleh Al Attar. (2016).
 "Effect of Curing System on Metakaolin Based Geopolymer Concrete. " International Journal of Science and Research, 5 (7), July.
- [38] K. Chandra Padmakar, B. Sharat Chandra Kumar. (2017). "An Experimental Study on Metakaolin and GGBS Based Geopolymer Concrete. " International Journal of Innovative Research in Science, Engineering and Technology, 6 (7), July.
- [39] Fatheali A. Shilar, Sharanabasava V. Ganachari, Veerabhadragouda B. Patil, Kottakkaran Sooppy Nisar. (2022). "Evaluation of Structural Performances of Metakaolin Based Geopolymer Concrete." Journal of Materials in Civil Engineering, 34 (1), January.
- [40] A. R. R. Kalaiyarrasi, P. Partheeban, V. Muthupandi. (2018). "Metakaolin Geopolymer Composite Concrete with High Durability." SSRG International Journal of Civil Engineering, 5 (7), July.