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1. Introduction 
 

Options are very popular financial derivatives and have 

always played an important role in the financial markets. In 

1973, Black and Scholes [1] proposed a famous option pricing 

model, which laid the foundation for later scholars to study 

the application of options in financial markets. In response to 

the development of the financial market, financial institutions 

have developed a variety of exotic options, among which 

multi-asset options have attracted the attention of many 

scholars and investors. The rainbow option is a type of 

multi-asset option, first proposed by Margrabe [2] in 1978. Its 

purpose is to maximize returns among multiple risk assets. A 

few years later, Stulz [3] derived a semi-closed analytical 

formula for European call and put options under the two-asset 

Black-Scholes (in short, B-S) model, which is based on the 

minimum and maximum values of the two underlying. 

Rubinstein [4] derives a pricing formula for rainbow options 

under the assumption of risk-neutral, which relies on the 

maximum or minimum value of the underlying asset price. 

 

The option pricing problem is usually studied on the classical 

B-S model [1], where the stock price is described by a 

Geometric Brownian motion (in short, GBM). However, B. B. 

Mandelbrot and J. W. Van Ness [5] observed long-range 

dependence of stock returns and gave the definition of 

Fractional Brownian motion (in short, FBM). Many 

subsequent scholars have applied Fractional Brownian motion 

to simulate stock price volatility. jork and Hult [6] and 

Kuznetsov [7] found that this is not reasonable because it has 

the possibility of arbitrage. To address the problem of 

arbitrage, Cheridito [8] argued that it is more reasonable to 

use the Mixed Fractional Brownian motion (in short, MFBM) 

to model the volatility of financial assets. The mixed 

Fractional Brownian motion is a Gaussian process that is a 

linear combination of a Brownian motion and a Fractional 

Brownian motion with Hurst exponent H > 1/2. Cheridito [9] 

proved that there is no possibility of arbitrage in the market 

when Hurst parameter ( )143 ,H   in MFBM model. 

 

Financial markets are susceptible to a variety of unexpected 

events, and the Mixed Fractional Brownian Motion model 

with jumps is a versatile and expressive model that combines 

the jump diffusion process with the characteristics of Mixed 

Fractional Brownian Motion, which can not only simulate 

large jumps and small fluctuations, but also capture the 

long-term memorability and non-Gaussian behavior of the 

market. Therefore, in order to be closer to the actual situation, 

this paper introduces the jump process to describe the 

dynamic process of the underlying asset based on the Mixed 

Fractional Brownian motion, which is referred to as the 

JMFBM model. And based on the JMFBM model, a 

semi-closed analytical formula for the two-asset European 

maximum call option is derived. 

 

2. The two-asset JMFBM model 
 

Basic Setting of the Pricing Model. 0{ , , , }{ }t t P‏‏‏‏  be a 

complete probability space equipped with a filtration{ }
t

 for 

0 t T  , and P a risk-neutral measure. Under the 

risk-neutral P measure, the return dynamics under the 

one-asset JMFBM model are given by the following 

stochastic differential equation (SDE): 

          ( )
-

( ) ( ) 1( - )
Ht

t

t

t N
J

t tWr W
S

S

d
d d d de  += + + −        (1) 

where { , 0}
t

S S t=  denotes the stock price process, r the 

risk-free interest rate, { ( ),  0}W W t t=   is the standard 

Brownian motion and { ( ) ,  0}
H H

W W t t=  is an 

independent standard Fractional Brownian motion with Hurst 

index (3 / 4 ,  1)H  and α, β are some real constants not both 

zero, { , 0}
t

N N t=  is the Poisson arrival process with jump 

intensity λ and J the random jump size of the log-returns with 

expected relative jump size κ. Applying fractional Itô’s 

formula to (2.1) yields the exact solution: 

0
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  (2) 

where kJ , k = 1, 2, 3,... are independent jump sizes that have 

an identical distribution to the random jump size J. 

 

Correspondingly, under the two-asset JMFBM model, the 

asset prices are given by: 
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Where 
t

W , 
H

t
W , J , and 

t
N  are independent of each other. 

◎
1 2

][ ( ) ( ) W t W t=
t

W consists of two correlated standard 

Brownian motions, having correlation  with 1  , adapted 

to the filtration. 

 

◎ 1 2
][ ( ) ( ) 

H H

W t W t=
H

t
W consists of two correlated standard 

Fractional Brownian motions, having correlation 
H

 with 

1
H

  , adapted to the filtration;  

 

◎ ( (2)1)
  ][ JJ=J , 

( )
(   1,  2,  3,  ....) 

i

k
kJ = are independent 

jump sizes that have an identical distribution to the random 

jump size
( )

1,  2,  i
J i =  and denote by 2

( ,  )N   the 

univariate normal distribution with mean ε and standard 

deviation ξ. 
( ) 2

1, 2 ( ) ,  ,  
i

i i
iJ N   = .The kth junps 

( )
( 1, 2)

i
iJ = occur together, driven by the same Poisson 

arrival process 
t

N with intensity  ,and are correlated with 

correlation 
J

 , 1
J

  . 

 

i
 is the expected relative jump size of asset i:  

 
2

( )

1

2

P
[ 1]

i i i

i

J
E e e

 


+

= − =   

3. Pricing Formula 
 

With the explicit solution of the stock price
( )

tS
i

 in hand, in this 

section the pricing formula for European call options on the 

maximum of two-asset options under the JMFBM model can 

be derived. 

 

Definition 1. A European call-on-the-max option gives its 

purchaser the right to buy the most expensive asset at the 

strike price K at expiration T. Its payoff is given by: 

 

( 1 ) ( 2 )

( 1 ) ( 2 )

( 1 ) ( 2 )

1 2
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 (4) 

where   denotes the indicator function of an event . 

 

(1) (2) (1)
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(2) (1) (2)
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(1) (2)

3 T T
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=

 (5) 

Accordingly, the value of a European call-on-the-max option 

under JMFBM model at time zero is given by: 
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2
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I I I

KE−

= + −

 (6) 

Next, calculate 
1

I , 
2

I , 
3

I . 

 

Considering the equivalent martingale measure 
1

Q  of P, 

where the measurement transformations are performed with 

reference to part 3 of [10] and [11]. 

 

Under the r the probability measure space 0{ , , , }{ }t t P‏‏‏‏ , 

over the time interval [0, T]. 

 

1 1

1 1 2

1

1

1
exp ( )

2

1
exp ( )

2

exp ( )
t

t

t

t

H H

H t H H H

N

k

dQ
L

dP

t

t

t 

− −

− −

=

=

= −  − 

 −  − 

 − + +

 
  

 
  

 
 
 

 k

θ W θ θ

θ W θ θ

a J

  (7) 

Where 1][
tP LE = , 

t
L  is a Radon–Nikodým derivative of 

some equivalent measure 
1

Q  with respect to P,  

 

1

1





 
=  

 
∑ , 

1

1

H

H

H





 
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∑ , 

1

2




=

 
 
 

θ , 
1

2

H

H

H




=

 
 
 

θ , 
1

2

a

a
=

 
 
 

a , 

 

  , [ 1]
Q

e E e


 = −
Ja , 

  

and exist standard Brownian motions 
1
( )tW , 

2
( )tW , 

Fractional Brownian motions 
1

( )
H

tW ,
2

( )
H

tW under 
1

Q  such 

that 

 

11 1
( ) ( )t tW Wd dt d= + , 

22 2
( ) ( )t tW Wd dt d= + , 

 

1 11
( ) ( )

H H

t tW Wd dt d= + , 
2 22

( ) ( )
H H

t tW Wd dt d= + . 
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1 2
( ) ( )t t dtW Wd d = , 

2 2
( ) ( )

H H

H
t tW Wd d dt= . 

 

Under 
1

Q , the compound Poisson process 
1

t

k

N

=


k

J has an 

intensity rate: (1 )  = + . 

First, consider the term of 
1

I : 
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Set 
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 (9) 

Then 
(1)

tL  is formally identical to (7). For the first Brownian 

motions part in (7) there holds 
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Comparing this to (9), 
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Which is satisfied for 

 

1 1
 = − , 

2 1
 = −  

 

Similarly, for the Fractional Brownian motions part in (7) 

there holds 
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Which is satisfied for 

 

1 1H
 = − , 

2 1H H
 = −  

 

Similarly, for the Jump process part in (3.3) there holds 
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Which is satisfied for 0 = , [1  0]=a , and hence 
1

 = . 

Under 
1

Q ,The moment generating function for the kth jump 

sizes 
) (2)(1
 ][  

kkk JJ=J  is defined by: 
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Hence, 
k

J is bivariate normally distributed under 
1

Q  with  
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and covariance matrix 
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Next calculate the probability 
1 1 0
( | ,  )

T
Q N n= . 

 

(1)

(2)

1

(1)

(

0

2)

0

0

( 2 ) ( 1 )

0

2H

2 2 2

2 1 1 2 1 1 2

2 2

2 1

2 2

)

2 2

2 1 1 2 2 1

1

(1

2

) (2

T T

2 2 1 1 2 1

0

[

S

( ) ( )] [ ( ) (

S

)

S

]

S

]

1 1
[ ( )]
2 2

1 1
(
2 2

{

1 1 1 1
ln [ ( )] ( )

2

S

2

S

2 2

ln

,  | }

{ }

[ }

{

T

H H

N

k

k k

T

J JT T T T

T

N n

T T

W W W W 

       

  

      

 
=

− + − +

− + + −

+ −

=

+ − + − + −

−

+





−

−







( 2

1

) ( 1 )

2H

1 2

2

1

2 2 1 1 2 2 1 1

)

[[ ( ) ( )] [ ( ) ( )] ]}H

N

H

k

k

T

k

H

J JT T T T

T

W W W W 

  

 
=

− + − + −

+

 

 

 

Let 
T

N n= , 

 

(1)

(2)

0

0

2 2

2 1 1 2 1 2

2 2 2H

2 1 1 2

11

S

S

1 1
( )]

2 2

1 1
( )
2 2

ln [

H

T

T

      

    

 + −

+

+ −

−

= +

+

 (17) 

31



 

Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595

http://www.bryanhousepub.orgwww.bryanhousepub.com

  
  
   

 

                                            Volume 6 Issue 6 2024Volume 6 Issue 7 2024 

   

   

                   
                   
                     
             

        

  
  

  

  
 

  

( 2 ) ( 1 )

1

2 2 1 1 2 2 1 111
[[ ( ) ( )] [ ( ) ( )]Y ]

T

H H

k

N

k

k

J JT T T TW W W W  
=

− + − + −= 

 (18) 

Where under 
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calculate mean and variance 
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calculate mean and variance 
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Under 
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and covariance matrix 
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Let ( ),  ,  x y  denote the bivariate normal cumulative 

distribution function (cdf), evaluated at (x, y), with mean 

[0  0] and covariance matrix Σ. 

Thus 
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get 
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Next, calculate 
1

I . By symmetry: 
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Where 
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calculate mean and variance 
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Let 
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calculate mean and variance 
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It holds that 
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calculate mean and variance 
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Last 
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Summarizing, the semi-closed analytic formula for the values 

of European call options on the maximum of two-asset 

options under the Mixed Fractional Brownian motion model 

with jumps (JMFBM) are given by: 
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 (66) 

4. Conclusion 
 

In this paper, a semi-closed analytic formula for the pricing of 

European call options on the maximum of two-asset options 

under the Mixed Fractional Brownian motion model with 

jumps (JMFBM) are derived using measurement 

transformations and Radon–Nikodým derived, which 

facilitates faster simulation and computation of option 

pricing. 
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