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Abstract: The analytical pricing formula of vulnerable barrier option when the underlying asset and counterparty asset follows a
geometric mixed fractional Brownian motion, with Hurst parameter H < (0,1), is considered. The derivation of the close-form pricing

formula of the vulnerable barrier option is described in detail.
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1. Introduction

Barrier options are popular among derivative securities
traders, especially in the over-the-counter and the foreign
exchange market. This popularity can be attributed to its
lower premium and elasticity than vanilla options. These
options are activated or extinguished when a barrier variable
reaches or breaks a specific level from above or below. Due to
the various advantages of barrier option, many scholars at
home and abroad have studied its pricing. Kirkby and
Aguilar[3] derived the pricing formula for the lookback
barrier option by discretizing time.

MFBM is a generalization of FBM, which is a linear
combination of Brownian motion and independent fractional
Brownian motion. Mounir[4] provided a detailed
introduction to the properties and theorems of mixed
fractional Brownian motion, as well as related knowledge

The underlying assets of wvulnerable options are highly
exposed to the risk of becoming worthless or losing their
value due to market events or price changes. In the
over-the-counter market, options are vulnerable due to the
credit risk of the counterparty, which may expose the option
holder to the risk of default. After the global financial crisis in
2008,vulnerable option received more and more attention.
Cheng and Xu[1][2] derived an analytical pricing formula for
vulnerable options under jump diffusion mixed fractional
Brownian motion by using actuarial method; Two years later,
they used actuarial methods again to derive a vulnerable
option pricing formula for a mixed fractional Brownian
motion model when the company's liabilities follow a
stochastic process. Wang and Zhang[6] derived the pricing
formulas for vulnerable barrier options and vulnerable double
barrier options based on the reflection principle of Brownian
motion. Inspired by it, Zhang and Zhou[7] derived the pricing
formula for vulnerable chain options by using the reflection
principle and Markov properties of Brownian motion.

The objective of this paper is to derive a closed-form pricing
formula for the vulnerable barrier option, in which both the
underlying asset and the counterparty asset follow geometric
mixed fractional Brownian motion. The arrangement of this
article is as follows. Section 2 reviews the properties of the
mixed fractional Brownian motion. This is followed by a
description of the derivation process of the analytical pricing

formula for vulnerable barrier option in Section 3. Section 4
concludes this paper.

2. Preliminaries

In this section, before formally pricing vulnerable barrier
options, let’s review the definition of mixed fractional
Brownian motion and its main properties, which we’ll use
later in the derivation.

Let (O, F {F()}..,, Q) be a complete probability space
equipped with a filtration (%), satisfying the usual

conditions. All the random variables and processes below in
this paper are defined on this given probability space.

2.1 Mix Fraction Brownian Motion

Definition 2.1. A mixed fractional Brownian motion M;ﬁ(t)
of parameters ¢, S and H is a linear combination of Brownian
motion B(t) and fractional Brownian motion B (t) with Hurst
parameter H €(0,1) , defined on a probability space
(QF {F (1)}e.Q) by:

MZ,(t) =aB(t)+ SB" (t)

where B(t) and B (t) are independent, « and S are two real
constants such that (a,f)=(0,0) . P is the physical
probability measure and the information filtration{F (t)}.., is
generated by (B,,B!) for <t, which satisfies the usual

conditions, such as monotonic increasing and right
continuous.

we will list some properties of the MFBM on the following
section.

Proposition 2.1. The MFBM M;ﬁ(t) satisfies the following
properties:

(i) M:ﬂ (t) is a centered Gaussian process with mean zero and
the covariance function
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2
Cov(M" (t),M" (5)) :az(t/\s)+%(t2H +s™M—[t-s["),
with s,t > 0;

(i) M;ﬁ(t) is not a Markovian process for H € (0,1)\{1/ 2};

(iii)The increments of M;ﬂ(t) are stationary and mixed-
self-similar, in the sense that, forany h >0,

where the notation i denotes the random variables on the

(0.1)

both sides of the equation (2.1) have the same distributions;

(iv)The increments of the process M ,(t) are positively

correlated ifH e (%,1) ; uncorrelated if H = % and negatively

correlated if H e (0,%);

(v)The increments ofM:ﬂ (t) are long-range dependence if

andonly if H e (%,1) ;

(vi)The MFBM M/ (t) is equivalent to BM for H € (%,1) .

2.2. Basic Setting of the Pricing Model

We assume S, and V, represents the Underlying asset price

and the Counterparty asset price, respectively. The stochastic
process representation of underlying asset goes down,

% = rdt + o, dB; (t) + o+ dB! (1) (0.2)

t

Where S, is the price of Underlying asset, B (t) and B{' (t)
are Brownian motion and fractional Brownian motion,

respectively, H is the Hurst parameter and H e(%,l); ris

the risk-free interest rate. B (t) and B{ (t) are mutually
independent.

The stochastic process representation of Counterparty asset
price goes down,

% =rdt+o,dB, (t)+oy'dB/' (t),  (0.3)

Where V, is the price of Counterparty asset, B, (t) and
B/ (t) are Brownian motion and fractional Brownian motion,

. . 3 .
respectively. H is the Hurst parameter and H e(Z,l); ris

the risk-free interest rate. Similar to the appeal, B, (t)and are

B/ () B((t) and B,(t) has

correlation coefficient pg, , B{' (t) and B}' (t) has correlation

mutually  independent.

coefficient p, .

3. Pricing Vulnerable Barrier Options

As we all known, barrier call option can be divided into four
categories, namely up-and-in call option, up-and out call
option, down-and-in call option and down-and-out call option.
Similarly, there are also four types of barrier put options,
which correspond to barrier call options. In the following
section, we will take up-and-in vulnerable barrier call option
as an example, derive its explicit price formula. We can obtain
the explicit price formula of other situations by using the same
method.

Theorem 3.1. Assuming that the underlying asset and the
counterparty asset meet the mixed fractional Brownian
motion model (2.2) and (2.3), the analytical pricing formula of
vulnerable barrier option can be expressed as

M
— D M @ @ (6]
Cu(0,5,.V0) = D [SoNy. (62,68 -, d 2 e, .o e,
g=1

1 1). 1 -7 2 2
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eg+l,g"“’eM,g’yK ’y2 'zg )+SOV0 D e
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(3) (3)
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1 1
=00t proso i +| ot -2ty e

O = (ra5 o)+ (@ )IT,

Ny.o (8,8, 8y.,; =) is the standard (M+2) dimensional

cumulative normal distribution function with correlation
matrix =, forq=1,2.

2 2 2 2 1 1
(é»til)) 2(55)) =(5ri3)) =(5t<k4)) = ol +<J ) 2", The correlation matrix can be used to express
2 2 2 SO = (pPy e b j=Le M +Lg=12. (0.4)
(09 = (o) =(o) = (3 =oiT s(e? f T s
Where o is given by
Pis = Pas
u=v,
oty —t,)+ (o)’ (tg" —t"
2t,-t) (s)(m m) lcusveg-t
O's(t ~t,)+(o5)" (" -t")
L)+ @ ) cucuem
+1<u<v<M,
m 1)+ @ (€ ) ’
~t,)+(03)’(t;" ")
\/ ogt, Jr(GH)ztgH ’ lsusg-lv=g,
S S
oe(ty —t,)+ (o) (" "
\/ (1) (S)(ZH ), 1<u<g-lLv=M+],
olT+(ad )T
ol(t, —t)+ (o) (2 —t2"
\/ s zg) ( SH)Z(UZH g ), g+l<u<M,v=M +1,
osT +(os )T (0.5)
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Vol + e yT™ “oveMEL
S S
050y Py Jt, )T+l ol ph, J@2H —t2r)T 2"
sOv Psy (g ) 5(1)55\(/1)psv (g ) l<u<g-1v=M+2,
00y Poy [, —t )T +ol ol pit J(E2H =21 2"
| G Y Psy Al ( g) (1)5 \(/1)psv ( g ) . gt1<u<Myv=M+2,
O, 1)6
050y Pey [t T +GSHUVHpSHVJt92HT2H
5050 , u=g,v=M +2,
tg
T N I
050y Psy 4(-1)65(1;7\/ Psv ’ U=M+1v=M +2,
S, 0,
0, else.
S V,
the .3 is given by Let S; =In— and V," =In—*, then we have
—p%,., l<u<g-Lv=M+2, So Vo
~Piar  9FISUSMV=M+2, S, :(r—ldsz)t—l(ag')zt2H +0,B () +ol'BS ()  (0.9)
Pav = Pew =1 ~Padwsa u=gv=M+2, (0.6 12 f
—Piame  U=M+Lv=M+2, V) = (r—EO'\f)t—E(O'VH )2t +0,B, (t)+ oy Bl (). (0.10)
19
Puv else. Let’s discretize time [0,T] into M segments, we have

Proof. The It6 formula is used for (2.2) and (2.3), the
following equation holds,

1 1
(r-=03)T-=(o8 )’ T?" 105 B (T)+0¢' B (T)

S; =S, 27 2 ,

(r2of T2 (o T2 4y By (T)eol B (T)

(0.7)

V, =V, (0.8)

<t <<t =T.

Under risk-neutral measure Q, the price formula of up-and-in
vulnerable barrier call option can be expressed as
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ui _ o-rT _ + _
Co =€ E[(ST K) (I(VT>D*,0m‘a>T<s,>B)+ D VTI(VT<D‘,Dm(a);S‘>B)

('( max $(t,)>8) )] ’”ZE[(S

l-«o

l-«a
[IM>D*> +TVTI(VT<D*)

Where
—rT
Il ZlE[ST Io/ >D",S; 2K, S(ty)>B,S(t;)<S(ty), i#9,j=1,2,- M)]
]
_ —rT
IZ_ Z [IO/T>D 12K, S(ty)>B,S(t;)<S(ty), j#0, j=1,2, M)]

9=1

_ —rT
|3_ D ZE[S VTIo/ <D".Sr 2K, S(t;)>B,S(t;)<S(ty), j#9, j=L.2.- M)]

g=1

l-a

_ —rT
|4_ D Ke gZ:;E[VTI(VT<D*,STZK,S(tg)>B,S(IJ)SS(tg),j;tg,j:l,Z,m,M)]

We calculate 1, first. We introduce a new probability measure

Q.
Q__5
dQ  E(S;)

—r L + 1-
J] =e TQZ:;E[(ST—K) [|(VT>D*)+T“VT|M<D~))

j (I(S(tg>>B,saj)ssag),j¢g,1:1,2,-~,M)) )] =L+ +1;+1,.  (0.11)

—exp[——a T——(os )T + o By (T) + o' B (T)]

We use fractlon Glrsanov theorem[5], we have

Bs (t) = B, (t) — o,

Bs (t) = BY () - o¥'t?",
Bv (t) = B, (t) - psvast Bv (t) = B! (t) - plf ot't?",

Bs(t) and Bv(t) are standard Brownian motion, B (t)

and By (t) are fractional Brownian motion under probability

measure Q.

So under measure Q , (3.7) and (3.8) transforms into

St =(r +%o€)t+%(a£’)2t2” +0,Bs(t)+0! Bs (t). (0.12)

. 1 1
Vi = (r—Ea\f +ps\,0'50'\,)t+(,0§'\,0'§0'\}4 —E(O'\}*)th2H +0, By (t) + o Bv (t).

(0.13)
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We takingl<u <v < g —1as an example, then we have

P = E(XXX) =J
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using the above method repeatedly, we can obtain the
correlation matrix £ .

Next, let’s start calculating I, .

M
AT
IZ = Ke ZlE[INTzD‘,STzK,S(tgbB,S(IJ)SS(tg),j¢g,j:1,2,---,M)]
g:

M

=Ke™ > Q(; >D",(S; 2K,S, >B,S, <5,
g=1

i#9,j=12,--,M)

M
— -7 (2) () (2) 2 ©2).50
_Ke ZNMJrZ(el,g"”’dg l”"eM,g'yK 'yz !zg )

g=1

&= —%oé)tk —%(a: R

(‘St(kz))z = o3t +(0'SH )Ztkz”,k =12 M,
E = (o) -2l T,

(69) = 2T + (o0 ) T2

In order to calculate I,, we introduce a new probability

3 1
measure Q
dQ _ SV,
dQ E(S,V,)’

(0.15)  We use fraction Girsanov theorem, under probability measure
where Q, we have
&P B, (t) = B, (t) — ot — pg, o t,
652; = (12)9 J=12-9-19+1-M _SH sH ) H ZHSV VH H:2H
0%, Bs'(t) =B (t) o't — pg oyt
B, () =B, (t)—o,t— t,
Ini+ 1(92) Ini+ tfj) IEVH() BVH() GVH szVUSH Hy2H
S A B S B (1) = B () -0yt ~ plj T,
' tu B (t) and B, (t) are standard Brownian motion, B (t)
|nV70*+ @) and B/'(t) are fractional Brownian motion,
y? =D5T, So under measure Q, (3.7) and (3.8) transforms into
2
= 1 1 _ _
S = (s 3ot paaa )| plotal + 60 | B0 B ) 016)
—, 1 1 _ _
Vi = (r"'zo'\f T PsyOsOy )t+(p§/G:O'VH +E(O'\? )thZH +0,B, (t)+0,'B; (1) (0.17)
l-a -7 -
l,= D € gzz; E[STVT IO/T<D",STZK,S(tg)>B,S(tJ)£S(tg),j¢g‘j:1,2‘»--,M)]
l-a o M~ . . . . .
= =278V, 2 QW; <D'S: 2K, S, >B,S, <8, ,j#9,j=12M)j=g,j=12--M) (018)
g=1
l-a Y
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with We can calculate =7 by using the method that use to
@)
> ®
el =— t(ls)‘g =129 -1g+1- M. calculate =8 .
Tt
Ini+ @ Ini+ @ Finally, we calculate I,. We introduce a new probability
q@ __ B " yo - K i measure Q ,
9 5® 'JK 5® ! .
: - 9Q_ v,
P _ g0 dQ E(V;)
yo = Vo we use fraction Girsanov theorem, under probability measure
2 1 ~
55 Q, we have

1 1
&0 =30t oot potal 2 e

2 2
3) _ 2 H 2H
<5tk ) —Gstk+(0's ) o,
(3)
2

=1+ 207 + o030, )T + (oot ol +2 (0 )T,

(69) =T +(af ) T2,

S x 1 1 A ~
S, =(r_50'52 'Flosvo'so'v)t‘F(psHvasHo_\;4 _E(JSH )thZH +0gBs (t)"‘o'sH BsH (®).

B, (1) = Bs (1) - s oy t, BE (1) =B (1) - piyoy't™"
B®=BO-at B 1)=8'O-a't",
B, (t) and B, (t) are standard Brownian motion, B!’ (t) and
B\f (t) are fractional Brownian motion.

So under measure Q , (3.7) and (3.8) transforms into

(0.19)
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. 1 1 A A
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g:
with
&
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tJ—lg
in 0 4 &0 In >0 4 £0
qw__B ™ @o__K "™
’ oW Yk PRI
|nE_ @
Y, = 52(4) ,

1 1
&0 =30t s puosat +{ photel -2l e,

2H
(5(4))2 =olt +(0'H )2t2H

e s s Koo

(@) 1, 1, hyeron
é:z =(r+§o-v)T+E(JV)T )

(69) = 02T + (o0t ) T2

The proof is over.

4. Conclusion

In this work, we have reviewed the relevant knowledge of

mixed fractional

Brownian motion. Then we taking

up-and-in call option as an example, the Closed-form
formulas for the wvulnerable barrier option in a mixed
fractional Brownian motion environment is provided
explicitly.
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