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Abstract: This paper studies VIX option pricing when interest rates and volatility are random. It proposes an affine framework based on 

a mixed jump-diffusion model. This model uses a Vasicek random interest rate process and a jump component for random volatility. This 

helps capture interest rate risk, volatility risk, and jump clustering in financial markets. Under a consistent pricing framework, we build a 

combined system. This system includes Hawkes-type price jumps, volatility jumps, and random interest rates. We then derive the related 

generalized characteristic function. The pricing problem is solved using the Fourier Cosine Series Expansion (COS) method. Compared to 

traditional models, this extended model lowers the root mean square error in VIX option pricing. It performs especially well during periods 

of monetary policy changes and financial market stress. This research offers a new theoretical framework and empirical tools for pricing 

volatility derivatives in complex market settings. 
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1. Introduction 
 

VIX options are key derivatives for measuring market 

volatility, making their pricing an important research topic in 

financial engineering. Major crises like the 2008 financial 

crisis and the 2020 pandemic show that traditional pricing 

models fail to properly capture volatility movements during 

panic periods. Especially during major shifts in global 

monetary policy (like aggressive interest rate hikes in 

2022-2023), the interaction between random interest rates and 

volatility risk becomes more prominent [1]. This creates two 

new challenges: On the one hand, changes in monetary policy 

frameworks (like the Fed’s average inflation targeting) 

strengthen asymmetric links between rates and volatility [2] 

On the other hand, high-frequency trading environments 

amplify the self-excited spread of jump risks [3]. 

 

This paper builds the first unified affine model combining 

stochastic interest rates, stochastic volatility, and Hawkes 

jumps. It solves the joint pricing problem for volatility and 

price jumps under random interest rates. Current research has 

three main gaps: First, Hawkes process applications often 

assume constant interest rates [4], ignoring rate randomness. 

Second, traditional stochastic volatility models don’t fully 

integrate volatility jumps with price jumps [5]. For example, 

while Eraker et al. [6] confirmed volatility jumps exist and 

Broadie et al. [7] built pricing frameworks, neither examined 

their interaction with interest rate dynamics. 

 

Third, high-dimensional models cause “dimensionality 

problems”: Fang et al.’s [8] COS method works well in two 

dimensions, but Zhang et al. [9] showed its convergence 

speed drops sharply in three or more dimensions. This leads to 

significant pricing errors during policy shifts, like Wang et 

al.’s [10] finding of abnormal rate sensitivity in VIX options 

on FOMC days. 

 

This led researchers to adopt self-exciting point processes for 

jumps. For example, Merton [11] introduced compound 

Poisson processes but couldn’t explain jump clustering; 

 

Hawkes [12] solved this with self-exciting processes using  

 

contagion mechanisms; Bacry et al. [13] applied this to 

high-frequency pricing; Aït-Sahalia et al. [14] first used it for 

financial contagion modeling; Zhang et al. [15] explored its 

application to VIX futures. However, these models ignore 

how the random nature of interest rates affects jump intensity 

[16]. Research into the impact of random interest rates started 

with Ahn and others [17]. Bakshi and others [18] showed that 

it can cause pricing errors for long-term options of up to 

twenty percent. There is a policy-sensitive link between 

interest rates and volatility: Duffie and others [19] revealed 

their nonlinear relationship using affine jump-diffusion 

models. Stochastic volatility models have evolved from 

single-factor to multi-factor types. The Heston model 

struggles to capture the changing nature of volatility because 

it assumes constant variance [20]. Christoffersen et al. [21] 

improved their accuracy by adding the leverage effect. Erel et 

al. [22] showed that for every one percent increase in 

volatility jump size, the probability of a price jump increases 

by a factor of two point three. Also, for numerical calculations, 

the Fourier transform techniques face two major challenges. 

First, the FFT method by Carr et al. [23] works well in one 

dimension, but Tour et al. [24] showed that for 

three-dimensional models, the computational complexity 

grows exponentially. Second, the convergence speed of the 

COS method deteriorates sharply in more than three 

dimensions [25]. 

 

This paper makes two key innovations. The first is developing 

the first three-dimensional framework that combines the 

Vasicek interest rate model, the CIR volatility model, and 

Hawkes jumps. It uses an interest rate-jump coupling 

parameter to capture how policies amplify panic sentiment, 

overcoming limitations in the work by Zhu et al. [26] and Lian 

et al. [27]. The second is improving the COS method to boost 

efficiency for high-dimensional problems. Validated by Chau 

et al. [28], this makes calculations for three-dimensional 

models eight times faster, effectively solving the 

dimensionality issue. The rest of the paper is organized as 

follows: Section 2 describes the model assumptions. Section 

three presents the derivation of the characteristic function. 

Section four covers VIX option pricing. Section five provides 

the conclusions and future outlook. 

 

46 

DOI: 10.53469/jgebf.2025.07(07).09



 

Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595

http://www.bryanhousepub.orgwww.bryanhousepub.com

  
  
   

 

                                            Volume 7 Issue 6 2025Volume 7 Issue 7 2025 

   

   

                   
                   
                     
             

        

  
  

  

  
 

  

2. Model Building 
 

2.1 Basic Model and Assumptions 

 

Let (Ω, ℱ, {ℱ𝑡}0≤𝑡≤𝑇 , 𝑄) be a filtered probability space. Here 

𝑄 is the risk-neutral probability measure, which 𝐸 means the 

expectation under this measure 𝑄. In this filtered probability 

space (Ω, ℱ, 𝑄), we consider the following dynamics for the 

S&P 500 index, denoted by 𝑆𝑡: 

 

𝑑𝑆𝑡

𝑆𝑡−
= (𝑅𝑡 −𝑚 − 𝑛̃𝜆𝑡)𝑑𝑡 + √𝑉𝑡𝑑𝑊1,𝑡 + (𝑒

𝑌𝑡 − 1)𝑑𝑁𝑡

𝑑𝑉𝑡 = 𝜅𝜈(𝜃𝜈 − 𝑉𝑡)𝑑𝑡 + 𝜂𝜈√𝑉𝑡𝑑𝑊2,𝑡

𝑑𝑅𝑡 = 𝜅𝑟(𝜃𝑟 − 𝑅𝑡)𝑑𝑡 + 𝜂𝑟𝑑𝑊3,𝑡

  

(2.1) 

Here 𝑆0 is the asset’s initial price, 𝑚 the continuous dividend 

yield, and 𝑛̃ the mean jump size. For parameters 𝜅𝜈 , 𝜃𝜈, 𝜂𝜈 are 

the mean-reversion speed, long-term average level, and 

volatility of volatility for the instantaneous variance 

𝑉𝑡 , 𝜅𝑟 , 𝜃𝑟 , 𝜂𝑟 are the mean-reversion speed, long-term average 

level, and volatility for the instantaneous risk-free rate process

𝑅𝑡. We assume the Feller condition 2𝜅𝜈𝜃𝜈 ≥ 𝜂𝜈
2 holds to keep 

the stochastic volatility process 𝑉𝑡  positive. 

𝑊1,𝑡 ,𝑊2,𝑡 ,𝑊3,𝑡 ,𝑊4,𝑡 They are all standard Brownian motions 

under the risk-neutral measure 𝑄 . Their correlations are 

constant 𝑑𝑊1,𝑡𝑑𝑊2,𝑡 = 𝜌12, 𝑑𝑊1,𝑡𝑑𝑊3,𝑡 = 𝜌13. 

 

We assume the jump sizes {𝑌𝑡}𝑡≥1  are independent and 

identically distributed (i.i.d.) random variables. The term 

𝑒𝑌𝑡 − 1 represents the percentage change caused by a price 

jump. In our model setup, each jump size 𝑌𝑡 follows a normal 

distribution 𝑁(𝜇𝐽, 𝜎𝐽
2). Because the jump size is log-normally 

distributed, we can find the expected value of the original 

jump percentage: 

 𝑛̃ ≔ 𝔼(𝑒𝑌𝑡 − 1) = 𝑒𝑥𝑝 (𝜇𝐽 +
1

2
𝜎𝐽
2) − 1 (2.2) 

{𝑁𝑡}𝑡≥0 It is a Hawkes process with random intensity 𝜆𝑡 that 

changes over time. It satisfies the equation: 

 𝑑𝜆𝑡 = 𝜅𝜆(𝜃𝜆 − 𝜆𝑡)𝑑𝑡 + 𝜂𝜆𝑑𝑁𝑡 (2.3) 

Here 𝜆0 is the initial value. The parameters 𝜅𝜆, 𝜃𝜆, 𝜂𝜆 are all 

positive constants. We assume 𝜅𝜆 > 𝜂𝜆 to ensure the intensity 

process is stationary. The full market model is then given by: 

 

{
 
 

 
 
𝑑𝑆𝑡

𝑆𝑡−
= (𝑅𝑡 −𝑚 − 𝑛̃𝜆𝑡)𝑑𝑡 + √𝑉𝑡𝑑𝑊1,𝑡 + (𝑒

𝑌𝑡 − 1)𝑑𝑁𝑡

𝑑𝑉𝑡 = 𝜅𝜈(𝜃𝜈 − 𝑉𝑡)𝑑𝑡 + 𝜂𝜈√𝑉𝑡𝑑𝑊2,𝑡

𝑑𝑅𝑡 = 𝜅𝑟(𝜃𝑟 − 𝑅𝑡)𝑑𝑡 + 𝜂𝑟𝑑𝑊3,𝑡

𝑑𝜆𝑡 = 𝜅𝜆(𝜃𝜆 − 𝜆𝑡)𝑑𝑡 + 𝜂𝜆𝑑𝑁𝑡

 (2.4) 

The model shows, when a jump occurs, the jump intensity 

process 𝜆𝑡 of the Hawkes process instantly increases by 𝜂𝜆. 

 

After this, the intensity decays exponentially at a rate 𝜅𝜆. This 

self-exciting property of the Hawkes process makes it 

well-suited for modeling jump clustering. We call this the 

SVJR model. This abbreviation will be used throughout the 

paper. 

 

 

 

 

2.2 Calculating the Volatility Index 

 

The Chicago Board Options Exchange (CBOE) significantly 

changed how it calculates the Volatility Index. Before 

September 2003, the VIX (now called VXO) was calculated 

using implied volatility from 8 at-the-money options on the 

S&P 100 index. These options had expiration dates closest to 

30 calendar days. The current method was developed jointly 

by CBOE and Goldman Sachs. It uses a model-free approach 

to calculate implied volatility from S&P 500 index options. 

 

We define 𝑃(𝑡, 𝑡 + 𝜏) = 𝔼𝑡
ℚ
[𝑒−∫ 𝑅𝑠𝑑𝑠

𝑡+𝜏
𝑡 ]. This 𝑃(𝑡, 𝑡 + 𝜏) is 

the price at the time 𝑡 of a zero-coupon bond maturing at time 

𝑡 + 𝜏. According to [29], it has the form: 

 𝑃(𝑡, 𝑡 + 𝜏) = 𝑒𝑥𝑝{𝐸(𝜏) − 𝐹(𝜏)𝑅𝑡} (2.5) 

where 

 {
𝐸(𝜏) = (𝜃𝑟 −

𝜂𝑟
2

2𝜅𝑟
2) (𝐹(𝜏) − 𝜏) −

𝜂𝑟
2𝐹2(𝜏)

4𝜅𝑟

𝐹(𝜏) =
1−𝑒−𝜅𝑟𝜏

𝜅𝑟

 (2.6) 

The theoretical expression for the volatility index is: 

 𝛿𝑡
2 =

2

𝜏
∑

∆𝑍𝑖

𝑍𝑖
2𝑖 𝑃(𝑡, 𝑡 + 𝜏) 𝑄𝑡(𝑍𝑖) −

1

𝜏
(
𝐹𝑡

𝑍0
)
2
 (2.7) 

Here 𝛿𝑡 =
𝑉𝐼𝑋𝑡

100
 is the VIX index divided by 100, 𝜏 =

30

365
 

represents the 30-calendar-day period in annualized terms, 𝑍𝑖 
is the strike price of the 𝑖-th out-of-the-money (OTM) option 

on the S&P 500 index, 𝑄𝑡(𝑍𝑖) and is the The midpoint of the 

bid-ask spread for the option with strike 𝑍𝑖 at time 𝑡 𝑍0 is the 

first strike price below the forward price 𝐹𝑡 at time, 𝑅𝑡 which 

is the stochastic interest rate at time 𝑡. 
 

The strike spacing ∆𝑍𝑖  is calculated as ∆𝑍𝑖 =
𝑍𝑖+1−𝑍𝑖−1

2
 the 

current VIX calculation uses a model-free approach. It 

combines OTM call and put options on the S&P 500, where 

the weights exactly replicate a 30-day log contract. Using 

stochastic analysis, VIX squared can be expressed as the 

conditional expectation of the log contract under the 

risk-neutral measure (Derivations follow references [30]): 

 𝛿𝑡
2 =

2

𝜏
𝔼𝑡
ℚ
[log (

𝑆𝑡+𝜏

𝐹𝑡
)] (2.8) 

In the expression, 𝐹𝑡 =
𝑆𝑡

𝑃(𝑡,𝑡+𝜏)
𝑒−𝑚𝜏 the forward price of the 

underlying index at time 𝑡  to maturity 𝑡 + 𝜏  𝑚  is the 

continuous dividend yield of the underlying index. 𝔼𝑡
ℚ

 Is the 

conditional expectation operator under the risk-neutral 

measure 𝑄, information available at time 𝑡? Later, we will 

show that 𝛿𝑡
2 it can be expressed as a closed-form expression 

using the model’s state variables: the instantaneous variance. 

𝑉𝑡 The stochastic interest rate 𝑅𝑡 and the jump intensity 𝜆𝑡. 
 

Proposition 2.1: Under the SVJR model (2.4), 𝛿𝑡
2 at time 𝑡 

can be expressed as an affine function of the state variables 𝑉𝑡 
and 𝜆𝑡: 

 𝛿𝑡
2 = 𝜀𝑉𝑡 + 𝛼𝜆𝑡 + 𝛽 (2.9) 
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The coefficients 𝜀, 𝛼, 𝛽 are given by: 

 

{
 
 

 
 𝜀 =

1−𝑒−𝜅𝜈𝜏

𝜅𝜈𝜏

𝛼 = 2(𝑛̃ − 𝑛𝑠 + 1)
1−𝑒−𝛾𝜏

(𝜅𝜆−𝜂𝜆)𝜏

𝛽 = 𝜃𝜈(1 − 𝜀) +
𝜅𝜆𝜃𝜆

𝜅𝜆−𝜂𝜆
[2(𝑛̃ − 𝑛𝑠 + 1) − 𝛼]

 (2.10) 

Proof. At any time 𝑡 ≤ 𝑢 ≤ 𝑠 , the dynamics of 𝜆𝑡  can be 

rewritten as: 

 𝑑𝜆𝑡 = 𝛾(𝜉 − 𝜆𝑡)𝑑𝑡 + 𝜂𝜆𝑑𝑀𝑡 (2.11) 

Where 𝑀𝑡 = 𝑁𝑡 − ∫ 𝜆𝑢𝑑𝑢
𝑡

0
 is a local martingale, and 𝛾 =

𝜅𝜆 − 𝜂𝜆, 𝜉 =
𝜅𝜆𝜃𝜆

𝜅𝜆−𝜂𝜆
. Define 𝜇(𝑡) = 𝑒𝛾𝑡 . Apply Itô’s lemma to 

𝜇(𝑡)𝜆𝑡 and integrate both sides from 𝑡 to 𝑡 + 𝜏 We have: 

 𝜆𝑠 = 𝑒−(𝑠−𝑡)𝛾𝜆𝑡 + 𝜉(1 − 𝑒
−(𝑠−𝑡)𝛾) + 𝜂𝜆 ∫ 𝑒(𝑠−𝑢)𝛾𝑑𝑀𝑢

𝑠

𝑡
  

(2.12) 

Taking conditional expectations on both sides gives: 

 𝔼𝑡
ℚ(𝜆𝑠) = 𝑒−(𝑠−𝑡)𝛾𝜆𝑡 + 𝜉(1 − 𝑒

−(𝑠−𝑡)𝛾) (2.13) 

At any time, 𝑡 ≤ 𝑢 ≤ 𝑠  apply Itô’s lemma to 𝑒𝜅𝜈
𝑡
𝑉𝑡  and 

integrate both sides from 𝑡 to 𝑡 + 𝜏, have: 

 
𝑉𝑠 = 𝑒

−𝜅𝜈(𝑠−𝑡)𝑉𝑡 + 𝜃𝜈(1 − 𝑒
−𝜅𝜈(𝑠−𝑡))

+𝜂𝜈 ∫ 𝑒−𝜅𝜈(𝑠−𝑢)
𝑠

𝑡 √𝑉𝑢𝑑𝑊2,𝑢

 (2.14) 

Taking conditional expectations on both sides gives: 

 𝔼𝑡
ℚ(𝑉𝑠) = 𝑒

−𝜅𝜈(𝑠−𝑡)𝑉𝑡 + 𝜃𝜈(1 − 𝑒
−𝜅𝜈(𝑠−𝑡)) (2.15) 

Similarly, the expression 𝑅𝑡 is: 

 
𝑅𝑠 = 𝑒

−𝜅𝑟(𝑠−𝑡)𝑅𝑡 + 𝜃𝑟(1 − 𝑒
−𝜅𝑟(𝑠−𝑡))

+𝜂𝑟 ∫ 𝑒−𝜅𝑟(𝑠−𝑢)
𝑠

𝑡 √𝑉𝑢𝑑𝑊3,𝑢

 (2.16) 

Taking conditional expectations on both sides yields: 

 𝔼𝑡
ℚ(𝑅𝑠) = 𝑒

−𝜅𝑟(𝑠−𝑡)𝑅𝑡 + 𝜃𝑟(1 − 𝑒
−𝜅𝑟(𝑠−𝑡)) (2.17) 

Let 𝑋𝑡 ≔ log 𝑆𝑡 . By Itô’s lemma, the dynamics of the 

log-price 𝑀𝑡 are: 

𝑑(log(𝑆𝑡)) = (𝑅𝑡 −𝑚 −
1

2
𝑉𝑡 + (𝑛̅ − 𝑛𝑠 + 1)𝜆𝑡) 𝑑𝑡

+√𝑉𝑡𝑑𝑊1,𝑡 + 𝑌𝑡𝑑𝑀𝑡

 (2.18) 

where 

 𝑛̃ = 𝔼𝑡
ℚ[𝑒𝑌𝑡 − 1] = 𝑛𝑠 − 1, 𝑛𝑠 = 𝔼𝑡

ℚ[𝑒𝑌𝑡], 𝑛̅ = 𝔼𝑡
ℚ[𝑌𝑡]  

Integrating both sides from 𝑡 to 𝑡 + 𝜏: 

 
log (

𝑆𝑡+𝜏

𝑆𝑡
) = ∫ (𝑅𝑠 −𝑚 −

1

2
𝑉𝑠 + (𝑛̅ − 𝑛𝑠 + 1)𝜆𝑠) 𝑑𝑠

𝑡+𝜏

𝑡

+∫ √𝑉𝑠𝑑𝑊1,𝑠
𝑡+𝜏

𝑡
+ ∫ 𝑌𝑠𝑑s

𝑡+𝜏

𝑡

  

(2.19) 

Taking conditional expectations: 

𝔼𝑡
ℚ
[log (

𝑆𝑡+𝜏

𝑆𝑡
)]

= 𝔼𝑡
ℚ
[∫ (𝑅𝑠 −𝑚 −

1

2
𝑉𝑠 + (𝑛̅ − 𝑛𝑠 + 1)𝜆𝑠) 𝑑𝑠

𝑡+𝜏

𝑡
]

= ∫ [𝑒−𝜅𝑟(𝑠−𝑡)𝑅𝑡 + 𝜃𝑟(1 − 𝑒
−𝜅𝑟(𝑠−𝑡)) − 𝑚

𝑡+𝜏

𝑡

−
1

2
(𝑒−𝜅𝜈(𝑠−𝑡)𝑉𝑡 + 𝜃𝜈(1 − 𝑒

−𝜅𝜈(𝑠−𝑡)))

+(𝑛̅ − 𝑛𝑠 + 1) (𝑒
−𝛾(𝑠−𝑡)𝜆𝑡 + 𝜉(1 − 𝑒

−𝛾(𝑠−𝑡)))] 𝑑𝑠

(2.20) 

After computing and simplifying, we get: 

 

𝔼𝑡
ℚ
[log (

𝑆𝑡+𝜏

𝑆𝑡
)]

= (𝜃𝑟 −𝑚 + (𝑛̅ − 𝑛𝑠 + 1)ξ −
1

2
𝑉𝑡) 𝜏

+
(𝑅𝑡−𝜃𝑟)(1−𝑒

−𝜅𝑟𝜏)

𝜅𝑟
−

(𝑉𝑡−𝜃𝜈)(1−𝑒
−𝜅𝜈𝜏)

2𝜅𝜈

+(𝑛̅ − 𝑛𝑠 + 1)
(𝜆𝑡−𝜉)(1−𝑒

−𝛾𝜏)

𝛾

 (2.21) 

From the definition in (2.8), 𝛿𝑡
2 it can be expressed as: 

 𝛿𝑡
2 = 𝜀𝑉𝑡 + 𝛼𝜆𝑡 + 𝛽  

The coefficients 𝜀, 𝛼, 𝛽 are given by: 

 𝜀 =
1−𝑒−𝜅𝜈𝜏

𝜅𝜈𝜏
  

 𝛼 = 2(𝑛̃ − 𝑛𝑠 + 1)
1−𝑒−𝛾𝜏

𝛾𝜏
  

 𝛽 = 𝜃𝜈(1 − 𝜀) + 𝜉[2(𝑛̃ − 𝑛𝑠 + 1) − 𝛼]  

When we substitute 𝛾 = 𝜅𝜆 − 𝜂𝜆 , 𝜉 =
𝜅𝜆𝜃𝜆

𝜅𝜆−𝜂𝜆
 into these 

equations, we get the result we want. 

 

During our research, we found that several classic pricing 

models are special cases of our general model, (1) When there 

are no jumps or jump clusters (i.e., parameters 𝑛𝑠 = 0, 𝜎𝑠 =
0, 𝜆𝑡 = 0), our general model becomes the Heston model. The 

Heston model became very successful in stochastic volatility 

modeling mainly because it’s easy to work with 

mathematically. Through careful verification, we confirm that 

the formula in [30] exactly matches our model in this case. 

This shows our model is logical and widely applicable. (2) 

Without jump clustering, when 𝑁𝑡  a Poisson process with 

constant intensity 𝜆 , our model reduces to a stochastic 

volatility model with Poisson jumps. For this case, we derive 

the VIX-squared expression 𝛿𝑡
2 = 𝜀𝑉𝑡 + 𝛼𝜆𝑡 + 𝛽 where 𝜀 =

1−𝑒−𝜅𝜈𝜏

𝜅𝜈𝜏
, 𝛼 = 𝜃𝜈(1 − 𝜀) + 2(𝑛̅ − 𝑛𝑠 + 1)𝜆. 

 

This result relates closely to [26], but compared to their 

complex model with variance jumps, we use a simpler 

specification. We leave extensions with variance jumps for 

future research. 

 

3. Characteristic Function 
 

It’s important to note that the SVJR model belongs to the class  

 

  

48 



 

Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595

http://www.bryanhousepub.orgwww.bryanhousepub.com

  
  
   

 

                                            Volume 7 Issue 6 2025Volume 7 Issue 7 2025 

   

   

                   
                   
                     
             

        

  
  

  

  
 

  

of affine jump-diffusion models. Given this, we use the 

method from Duffie et al. [19] to derive the model’s 

characteristic function. Under the risk-neutral measure 𝑄, the 

joint conditional characteristic function at time 𝑡  is 

𝛹(𝑢1, 𝑢2, 𝑢3; 𝜈, 𝑟, 𝜆, 𝜏) then 

 

𝛹(𝑢1, 𝑢2, 𝑢3; 𝜈, 𝑟, 𝜆, 𝜏)

= 𝔼𝑡
ℚ
[𝑒𝑖𝑢1𝑉𝑇+𝑖𝑢2𝑅𝑇+𝑖𝑢3𝜆𝑇|ℱ𝑡]

= 𝔼𝑡
ℚ
[𝑒𝑖𝑢1𝑉𝑇+𝑖𝑢2𝑅𝑇+𝑖𝑢3𝜆𝑇|𝑉𝑇 = 𝜈, 𝑅𝑇 = 𝑅, 𝜆𝑇 = 𝜆]

= 𝔼𝑡
ℚ
[𝑒𝑖𝑢1𝑉𝑇+𝑖𝑢2𝑅𝑇+𝑖𝑢3𝜆𝑇]

 (3.1) 

This 𝛹(𝑢1, 𝑢2, 𝑢3; 𝜈, 𝑟, 𝜆, 𝜏) is the joint characteristic function 

of the random variables 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡, given their values (𝜈, 𝑟, 𝜆) 

at a time 𝑡 . Here, 𝔼𝑡
ℚ[∙] means the conditional expectation 

under the measure 𝑄 given the filtration {ℱ𝑡}0≤𝑡≤𝑇. Also 𝜏 =

𝑇 − 𝑡  is the period 𝑖 = √−1  is the imaginary unit, 

𝑢1, 𝑢2, 𝑢3 ∈ ℂ are complex numbers. This joint characteristic 

function can be obtained by solving the following system of 

ordinary differential equations (ODEs), as shown in the next 

theorem. 

 

Theorem 3.1: Under measure 𝑄 , the joint characteristic 

function 𝛹(𝑢1, 𝑢2, 𝑢3; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏)  has this closed-form 

expression: 

 

𝛹(𝑢1, 𝑢2, 𝑢3; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏)

= exp{𝑖𝑢1𝜈 +𝑖𝑢2𝑟 + 𝑖𝑢3𝜆

+𝐴(𝑢1, 𝑢2, 𝑢3, 𝜏) + 𝐵(𝑢1, 𝑢2, 𝑢3, 𝜏)𝜈

+𝐶(𝑢1, 𝑢2, 𝑢3, 𝜏)𝑟 + 𝐷(𝑢1, 𝑢2, 𝑢3, 𝜏)𝜆}

  

where 

 𝐴(𝑢1, 𝑢2, 𝑢3, 𝜏) = 𝜅𝜈𝜃𝜈𝐼1 + 𝜅𝑟𝜃𝑟𝐼2 + 𝜅𝜆𝜃𝜆𝐼3 +
1

2
𝜂𝑟
2𝐼4  

 𝐼1 =
2𝑖𝑢1𝜅𝜈𝜏

𝑎𝜅𝜈
−

4𝜅𝜈

𝑎𝜅𝜈𝜂𝜈
2 log (

2𝜅𝜈

𝑎+𝑏𝑒−𝜅𝜈𝜏
)  

 𝐼2 =
𝑖𝑢2

𝜅𝑟
− (𝜏 −

1−𝑒−𝜅𝑟𝜏

𝜅𝑟
)  

 𝐼3 =
𝑖𝑢3

𝜅𝜆−𝜂𝜆
− (𝜏 −

1−𝑒−(𝜅𝜆−𝜂𝜆)𝜏

𝜅𝜆−𝜂𝜆
)  

 𝐼4 = −
𝑢3
2

(𝜅𝜆−𝜂𝜆)
2 (𝜏 −

2(1−𝑒−(𝜅𝜆−𝜂𝜆)𝜏)

𝜅𝜆−𝜂𝜆
+

1−𝑒−2(𝜅𝜆−𝜂𝜆)𝜏

2(𝜅𝜆−𝜂𝜆)
)  

 𝐵(𝑢1, 𝜏) =
2𝑖𝑢1(1−𝑒

−𝜅𝜈𝜏)

2𝜅𝜈−𝜂𝜈
2𝑖𝑢1(1−𝑒

−𝜅𝜈𝜏)
  

 𝐶(𝑢2, 𝜏) =
𝑖𝑢2(1−𝑒

−𝜅𝑟𝜏)

𝜅𝑟
  

 𝐷(𝑢3, 𝜏) =
𝑖𝑢3(1−𝑒

−(𝜅𝜆−𝜂𝜆)𝜏)

𝜅𝜆−𝜂𝜆
  

 𝑎 = 2𝜅𝜈 − 𝑖𝑢1𝜂𝜈
2  

 𝑏 = 𝑖𝑢1𝜂𝜈
2  

Proof. By the Feynman-Kac theorem, 

𝛹(𝑢1, 𝑢2, 𝑢3; 𝜈, 𝑟, 𝜆, 𝜏) ≜ 𝛹(𝜈, 𝑟, 𝜆, 𝜏)  satisfies this partial 

differential equation (PDE): 

 

𝜕𝛹

𝜕𝜏
− (𝜅𝜈(𝜃𝜈 − 𝜈)

𝜕𝛹

𝜕𝜈
+ 𝜅𝑟(𝜃𝑟 − 𝑟)

𝜕𝛹

𝜕𝑟

+𝜅𝜆(𝜃𝜆 − 𝜆)
𝜕𝛹

𝜕𝜆
+

1

2
𝜂𝜈
2𝜈

𝜕2𝛹

𝜕𝜈2
+

1

2
𝜂𝑟
2 𝜕

2𝛹

𝜕𝑟2
)

−𝜆𝔼[𝛹(𝜈, 𝑟, 𝜆 + 𝜂𝜆 , 𝜏) − 𝛹(𝜈, 𝑟, 𝜆, 𝜏)] = 0

 (3.2) 

Since the model has an affine structure [31], we assume the 

characteristic function takes this form: 

 

𝛹(𝑢1, 𝑢2, 𝑢3; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏)

= exp{𝑖𝑢1𝜈 +𝑖𝑢2𝑟 + 𝑖𝑢3𝜆

+𝐴(𝑢1, 𝑢2, 𝑢3, 𝜏) + 𝐵(𝑢1, 𝑢2, 𝑢3, 𝜏)𝜈

+𝐶(𝑢1, 𝑢2, 𝑢3, 𝜏)𝑟 + 𝐷(𝑢1, 𝑢2, 𝑢3, 𝜏)𝜆}

 (3.3) 

With terminal conditions: 𝛹(𝑢1, 𝑢2, 𝑢3, 0) = 𝑒
𝑖𝑢1𝜈+𝑖𝑢2𝑟+𝑖𝑢3𝜆 

𝐴(𝑢1, 𝑢2, 𝑢3, 0) = 0, 𝐵(𝑢1, 𝑢2, 𝑢3, 0) = 0, 

𝐶(𝑢1, 𝑢2, 𝑢3, 0) = 0, 𝐷(𝑢1, 𝑢2, 𝑢3, 0) = 0. 

 

Substituting this into (3.2) gives: 

 

𝜕𝐴

𝜕𝜏
+

𝜕𝐵

𝜕𝜏
𝜈 +

𝜕𝐶

𝜕𝜏
𝑟 +

𝜕𝐷

𝜕𝜏
𝜆

= 𝜅𝜈(𝜃𝜈 − 𝜈)𝐵 + 𝜅𝑟(𝜃𝑟 − 𝑟)𝐶 + 𝜅𝜆(𝜃𝜆 − 𝜆)𝐷

+
1

2
𝜂𝜈
2𝜈𝐵2 +

1

2
𝜂𝑟
2𝐶2 + 𝜆(𝑒𝐷𝜂𝜆 − 1)

 (3.4) 

Substituting (3.3) into (3.2) and using (3.4), we find the 

unknown coefficient functions 𝐴(𝑢1, 𝑢2, 𝑢3, 𝜏) , 

𝐵(𝑢1, 𝑢2, 𝑢3, 𝜏), 𝐶(𝑢1, 𝑢2, 𝑢3, 𝜏) , and 𝐷(𝑢1, 𝑢2, 𝑢3, 𝜏)  satisfy 

these ordinary differential equations (ODEs): 

 {
𝜕𝐴

𝜕𝜏
= 𝜅𝜈𝜃𝜈𝐵 + 𝜅𝑟𝜃𝑟𝐶 + 𝜅𝜆𝜃𝜆𝐷 +

1

2
𝜂𝑟
2𝐶2,

𝐴(𝑢1, 𝑢2, 𝑢3, 0) = 0.
 (3.5) 

 {
𝜕𝐵

𝜕𝜏
=

1

2
𝜂𝜈
2𝐵2 − 𝜅𝜈𝐵 + 𝑖𝑢1,

𝐵(𝑢1, 𝑢2, 𝑢3, 0) = 0.
 (3.6) 

 {
𝜕𝐶

𝜕𝜏
= −𝜅𝜈𝐶 + 𝑖𝑢2,

𝐶(𝑢1, 𝑢2, 𝑢3, 0) = 0.
 (3.7) 

 {
𝜕𝐷

𝜕𝜏
= −𝜅𝜆𝐷 + 𝑒

𝐷𝜂𝜆 − 1 + 𝑖𝑢3,

𝐷(𝑢1, 𝑢2, 𝑢3, 0) = 0.
 (3.8) 

Where Equation (3.6) is a constant-coefficient Riccati 

equation 𝐵, Equation (3.7) is a first-order linear ODE for 𝐶. 

We can solve these equations to get: 

 𝐵(𝑢1, 𝜏) =
2𝑖𝑢1(1−𝑒

−𝜅𝜈𝜏)

2𝜅𝜈−𝜂𝜈
2𝑖𝑢1(1−𝑒

−𝜅𝜈𝜏)
 (3.9) 

 𝐶(𝑢2, 𝜏) =
𝑖𝑢2(1−𝑒

−𝜅𝑟𝜏)

𝜅𝑟
 (3.10) 

Usually, 𝐴 and 𝐷 can’t be written in a simple closed form. 

But when the Hawkes process becomes a Poisson process, we 

get explicit solutions that match [26]. We’ll solve the ODEs 

using the fourth-order Runge-Kutta method. Here’s how: 

 

Solving equation (3.8) with Runge-Kutta is slow because it 

needs step-by-step initial values. To make it faster, we 

approximate 𝑒𝐷𝜂𝜆  using its first-order Taylor expansion 

𝑒𝐷𝜂𝜆 ≈ 1 + 𝐷𝜂𝜆. This turns (3.8) into a linear ODE: 

 
𝜕𝐷

𝜕𝜏
= (−𝜅𝜆 + 𝜂𝜆)𝐷 + 𝑖𝑢3  

After simple calculations, we get: 

 𝐷(𝑢3, 𝜏) =
𝑖𝑢3(1−𝑒

−(𝜅𝜆−𝜂𝜆)𝜏)

𝜅𝜆−𝜂𝜆
 (3.11) 

Plug (3.9), (3.10), and (3.11) into (3.5) and integrate: 

 𝐴(𝑢1, 𝑢2, 𝑢3, 𝜏) = 𝜅𝜈𝜃𝜈𝐼1 + 𝜅𝑟𝜃𝑟𝐼2 + 𝜅𝜆𝜃𝜆𝐼3 +
1

2
𝜂𝑟
2𝐼4  

(3.12) 

where 
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 𝐼1 =
2𝑖𝑢1𝜅𝜈𝜏

𝑎𝜅𝜈
−

4𝜅𝜈

𝑎𝜅𝜈𝜂𝜈
2 log (

2𝜅𝜈

𝑎+𝑏𝑒−𝜅𝜈𝜏
)  

 𝐼2 =
𝑖𝑢2

𝜅𝑟
− (𝜏 −

1−𝑒−𝜅𝑟𝜏

𝜅𝑟
)  

 𝐼3 =
𝑖𝑢3

𝜅𝜆−𝜂𝜆
− (𝜏 −

1−𝑒−(𝜅𝜆−𝜂𝜆)𝜏

𝜅𝜆−𝜂𝜆
)  

 𝐼4 = −
𝑢3
2

(𝜅𝜆−𝜂𝜆)
2 (𝜏 −

2(1−𝑒−(𝜅𝜆−𝜂𝜆)𝜏)

𝜅𝜆−𝜂𝜆
+

1−𝑒−2(𝜅𝜆−𝜂𝜆)𝜏

2(𝜅𝜆−𝜂𝜆)
)  

 𝑎 = 2𝜅𝜈 − 𝑖𝑢1𝜂𝜈
2  

 𝑏 = 𝑖𝑢1𝜂𝜈
2  

The solutions 𝐴(𝑢1, 𝜏) , 𝐵(𝑢1, 𝜏) , 𝐶(𝑢2, 𝜏) , 𝐷(𝑢3, 𝜏)  follow 

similar methods and then obtain 𝛹. 

 

4. VIX Option Pricing Using the COS Method 
 

Traditional option pricing often uses inverse Fourier 

transforms, but the non-affine nature of the log-VIX creates 

theoretical barriers for the FFT method [23]. Therefore, this 

section employs the COS method [8] to price VIX options 

under stochastic interest rates and volatility. This approach 

uses Fourier-cosine expansions while maintaining 

exponential convergence speed and linear computational 

complexity. 

 

Based on the SVJR model, we study a European call option on 

the VIX index with strike price 𝑍, maturity 𝑇. 

 

Its payoff at expiration is max(𝑉𝐼𝑋𝑇 − 𝑍, 0) By Risk-neutral 

pricing, the option price 𝐶𝑡 at time 𝑡 is: 

 

𝐶𝑡 = 𝔼𝑡
ℚ
[exp (−∫ 𝑅𝑠𝑑𝑠

𝑇

𝑡
)max(𝑉𝐼𝑋𝑇 − 𝑍, 0)]

= 100𝑃(𝑡, 𝑇)𝔼𝑡
ℚ
[max (√𝛿𝑇

2 − 𝑍′, 0)]

= 100𝑃(𝑡, 𝑇) ∫ max(√𝑥 − 𝑍′, 0)
+∞

0
𝑓𝜏(𝑥|𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡)𝑑𝑥

  

(4.1) 

where 𝑃(𝑡, 𝑡 + 𝜏) = 𝔼𝑡
ℚ
[exp (−∫ 𝑅𝑠𝑑𝑠

𝑇

𝑡
)] , 𝛿𝑇 =

𝑉𝐼𝑋𝑇

100
, 𝜏 =

𝑇 − 𝑡 , 𝑍′  is the strike price in percentage points, 

𝑓𝜏(𝑥|𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡)  It is the risk-neutral conditional density 

function of 𝛿𝑇 given information at a time 𝑡. Using the inverse 

Fourier transform, this conditional density can be written as: 

 𝑓𝜏(𝑥|𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡) =
1

2𝜋
∫ 𝑒−𝑖𝑢𝑥𝜑(𝑢; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏)𝑑𝑢
 

ℝ
 (4.2) 

where 𝜑(𝑢) is derived from Theorem 3.1 and Proposition 2.1 

𝜑(𝑢; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏) = 𝑒𝑖𝑢𝛽𝛹(𝜀𝑢, 0, 𝛼𝑢; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏). 
 

This assumes 𝑢2 = 0, 𝑢1 = 𝜀𝑢, 𝑢3 = 𝛼𝑢, here 𝛹 is the joint 

characteristic function from Theorem 3.1, 𝜀, 𝛼, 𝛽  Are the 

constant coefficients from Proposition 2.1? 

 

After selecting a proper truncation range (explained later), 

𝑓𝜏(𝑥|𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡)  it can be approximated using a truncated 

Fourier cosine series expansion. 

 

𝑓𝜏(𝑥|𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡)

≈
2

𝑏−𝑎

∙ ∑  ∗𝑅𝑁−1
𝑛=0 [𝜑 (

𝑛𝜋

𝑏−𝑎
; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏) 𝑒

−𝑖𝑛𝜋
𝑎

𝑏−𝑎]

∙ cos (𝑛𝜋
𝑥−𝑎

𝑏−𝑎
)

 (4.3) 

where ∑∗ means the first term is multiplied by 
1

2
, ℜ[∙] which 

is the operation taking the real part. 

 

The pricing formula for VIX options is obtained by 

substituting (4.3) into (4.1) and interchanging integration and 

summation: 

 
𝐶𝑡 ≈ 100𝑃(𝑡, 𝑇) ∑  ∗ℜ𝑁−1

𝑛=0

∙ [𝜑 (
𝑛𝜋

𝑏−𝑎
; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏) 𝑒

−𝑖𝑛𝜋
𝑎

𝑏−𝑎] 𝐴𝑛
 (4.4) 

where 

 𝐴𝑛 =
2

𝑏−𝑎
∫ max(√𝑥 − 𝑍′, 0) cos (𝑛𝜋

𝑥−𝑎

𝑏−𝑎
) 𝑑𝑥

𝑏

𝑎
  

The following lemma shows that for VIX options, the payoff 

series coefficients 𝐴𝑛 can be solved analytically: 

 

Lemma 4.1: For the payoff function max(√𝑥 − 𝑍′, 0) on an 

interval [𝑎, 𝑏], the Fourier cosine series coefficients 𝐴𝑛 Have 

these analytical solutions: 

 

When 𝑛 = 0, 

 𝐴𝑛 = {

2

𝑏−𝑎
(
2

3
𝑏
3

2 − 𝑍′𝑏 +
1

3
𝑍′3) , 𝑎 < 𝑍′2,

2

𝑏−𝑎
(
2

3
(𝑏

3

2 − 𝑎
3

2) − 𝑍′(𝑏 − 𝑎)) , 𝑎 ≥ 𝑍′2.
 (4.5) 

When 𝑛 ≠ 0 

 𝐴𝑛 =

{
 
 
 
 
 

 
 
 
 
 

2

𝑏−𝑎
ℜ{𝑒−𝑖𝜔𝑎 [

√𝑏−𝑍′

𝑖𝜔
𝑒𝑖𝜔𝑏

+
√𝜋

2(√−𝑖𝜔)
3 (𝑒𝑟𝑓𝑧(√𝑏 ∙ √−𝑖𝜔)

−𝑒𝑟𝑓𝑧(𝑍′ ∙ √−𝑖𝜔))]}

𝑎 < 𝑍′2,

2

𝑏−𝑎
ℜ{𝑒−𝑖𝜔𝑎 [

√𝑏−𝑍′

𝑖𝜔
𝑒𝑖𝜔𝑏

−
√𝑎−𝑍′

𝑖𝜔
+

√𝜋

2(√−𝑖𝜔)
3

∙ (𝑒𝑟𝑓𝑧(√𝑏 ∙ √−𝑖𝜔) − 𝑒𝑟𝑓𝑧(√𝑎 ∙ √−𝑖𝜔))]}

𝑎 ≥ 𝑍′2.

 (4.6) 

where 𝜔 =
𝑛𝜋

𝑏−𝑎
 the complex error function is defined as 

𝑒𝑟𝑓𝑧(𝑧) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑧

0
. 

 

Proof. To simplify notation, let 𝜔 =
𝑛𝜋

𝑏−𝑎
. When 𝑛 ≠ 0 

 

If 𝑎 < 𝑍′2  the payoff function max(√𝑥 − 𝑍′, 0)  has a 

non-zero interval [𝑍′2, 𝑏] . At this time, the coefficient 𝐴𝑛  
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satisfies: 

 𝐴𝑛 =
2

𝑏−𝑎
∫ max(√𝑥 − 𝑍′, 0) cos(𝜔(𝑥 − 𝑎))𝑑𝑥
𝑏

𝑍′2
 (4.7) 

using the complex exponential form of cosine cos(𝑥) =
ℜ[𝑒𝑖𝑥] (ℜ[∙] takes the real part). This converts the integral to 

complex exponential form: 

 𝐴𝑛 =
2

𝑏−𝑎
ℜ [∫ √𝑥𝑒𝑖𝜔(𝑥−𝑎)𝑑𝑥

𝑏

𝑍′2
− 𝑍′ ∫ 𝑒𝑖𝜔(𝑥−𝑎)𝑑𝑥

𝑏

𝑍′2
]  

(4.8) 

Using integration by parts and the complex error function, we 

solve the integral analytically: 

 

∫ √𝑥𝑒𝑖𝜔(𝑥−𝑎)𝑑𝑥
𝑏

𝑍′2

= 𝑒−𝑖𝜔𝑎 ∫ √𝑥𝑒𝑖𝜔𝑥𝑑𝑥
𝑏

𝑍′2

= 𝑒−𝑖𝜔𝑎 (
√𝑏

𝑖𝜔
𝑒𝑖𝜔𝑏 −

𝑍′

𝑖𝜔
𝑒𝑖𝜔𝑍

′2
− ∫

1

𝑖𝜔
𝑒𝑖𝜔𝑥

2
𝑑𝑥

√𝑏

𝑍′
)

    ∙ 𝑒−𝑖𝜔𝑎 (𝑒𝑟𝑓𝑧(√𝑏√−𝑖𝜔) − 𝑒𝑟𝑓𝑧(𝑍′√−𝑖𝜔))

 (4.9) 

Here 𝑒𝑟𝑓𝑧(𝑧) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑧

0
 is the complex error function. 

The second exponential integral directly gives: 

 
𝑍′ ∫ 𝑒𝑖𝜔(𝑥−𝑎)𝑑𝑥

𝑏

𝑍′2
= 𝑍′𝑒−𝑖𝜔𝑎 ∫ 𝑒𝑖𝜔𝑥𝑑𝑥

𝑏

𝑍′2

= 𝑍′𝑒−𝑖𝜔𝑎 (
1

𝑖𝜔
𝑒𝑖𝜔𝑏 −

1

𝑖𝜔
𝑒𝑖𝜔𝑍

′2
)
  

(4.10) 

Substituting the integral results from (4.9) and (4.10) into the 

expression for 𝐴𝑛, we get the analytical solution for 𝑛 ≠ 0, 

𝑎 ≤ 𝑍′2 

 

For 𝑛 = 0 and 𝑎 ≥ 𝑍′2 similar integral derivations lead to the 

piecewise coefficient expression in (4.6). 

 

When 𝑛 = 0  and 𝑎 ≥ 𝑍′2  the payoff function max(√𝑥 −

𝑍′, 0) has a non-zero interval [𝑎, 𝑏] 

 

In this case, the coefficient 𝐴𝑛 satisfies: 

 

𝐴𝑛 =
2

𝑏−𝑎
∫ max(√𝑥 − 𝑍′, 0)
𝑏

𝑎

=
2

𝑏−𝑎
∫ (√𝑥 − 𝑍′)
𝑏

𝑎
𝑑𝑥

=
2

𝑏−𝑎
(
2

3
(𝑏

3

2 − 𝑎
3

2) − 𝑍′(𝑏 − 𝑎))

 (4.11) 

For the case 𝑎 < 𝑍′2 𝑛 = 0, similar integral derivations yield 

the piecewise coefficient expression in (4.5). 

 

In numerical integration, choosing a good truncation range 

balances speed and accuracy. Following [8]’s framework but 

adjusting for 𝛿𝑇
2  (since 𝛿𝑇 =

𝑉𝐼𝑋𝑇

100
 it must be non-negative), 

we set the lower bound to avoid negative values. The 

truncation range [𝑎, 𝑏] is: 

 [𝑎, 𝑏] ≜ [max (𝑐1 − 𝐿√𝑐2 + √𝑐4, 0) , 𝑐1 + 𝐿√𝑐2 + √𝑐4]  

Here 𝐿 = 10 is an empirically set truncation parameter. 

 

𝑐1, 𝑐2, 𝑐3 Are the first, second, and fourth-order cumulants of 

𝛿𝑇
2 . For 𝛿𝑇

2  its-th order cumulant 𝑐𝑘  is defined by 

differentiating the log-characteristic function: 

 𝑐𝑘 =
1

𝑖𝑘

𝜕𝑘(log𝜑(𝑢))

𝜕𝑢𝑘
|
𝑢=0

 (4.12) 

Where 𝜑(𝑢) is the characteristic function of 𝛿𝑇
2 and 𝑖 = √−1 

is the imaginary unit. 

 

Lemma 4.2: Suppose the random variable 𝛿𝑇
2  follows the 

stochastic process described in Proposition 3.1. Then its first 

four cumulants have these analytical forms: 

 

𝑐1 = 𝛽 + 𝜀𝑒
−𝜅𝜈𝜏𝑉𝑡 + 𝛼𝑒

−(𝜅𝜆−𝜂𝜆)𝜏𝜆𝑡 + 𝜀𝜃𝜈 (𝜏 −
1−𝑒−𝜅𝜈𝜏

𝜅𝜈
)

+𝛼𝜃𝜆𝜅𝜆 (
1

(𝜅𝜆−𝜂𝜆)
2 ((𝜅𝜆 − 𝜂𝜆)𝜏 + 𝑒

−(𝜅𝜆−𝜂𝜆)𝜏 − 1))
  

 

𝑐2 =
𝜂𝜈
2𝜀2

𝜅𝜈
3 (𝑒

−𝜅𝜈𝜏 − 4𝑒−2𝜅𝜈𝜏 + 3𝑒−3𝜅𝜈𝜏)𝑉𝑡

+
𝜂𝜆
2𝛼2

(𝜅𝜆−𝜂𝜆)
3 (𝑒

−(𝜅𝜆−𝜂𝜆)𝜏 − 4𝑒−2(𝜅𝜆−𝜂𝜆)𝜏 + 3𝑒−3(𝜅𝜆−𝜂𝜆)𝜏)𝜆𝑡

+
𝜂𝜈
2𝜀2𝜃𝜈

2𝜅𝜈
3 (1 − 4𝑒−𝜅𝜈𝜏 + 6𝑒−2𝜅𝜈𝜏 − 3𝑒−3𝜅𝜈𝜏)

+
𝜂𝜆
2𝛼2𝜃𝜆𝜃𝜅𝜆

(𝜅𝜆−𝜂𝜆)
4 (1 − 4𝑒

−(𝜅𝜆−𝜂𝜆)𝜏 + 6𝑒−2(𝜅𝜆−𝜂𝜆)𝜏 − 3𝑒−3(𝜅𝜆−𝜂𝜆)𝜏)

  

 

𝑐4 =
3𝜀4𝜂𝜈

4

𝜅𝜈
5 (𝑒−𝜅𝜈𝜏 − 11𝑒−2𝜅𝜈𝜏 + 24𝑒−3𝜅𝜈𝜏 − 15𝑒−4𝜅𝜈𝜏)𝑉

+
3𝛼4𝜂𝜆

4

(𝜅𝜆−𝜂𝜆)
5 (𝑒

−(𝜅𝜆−𝜂𝜆)𝜏 − 11𝑒−2(𝜅𝜆−𝜂𝜆)𝜏 + 24𝑒−3(𝜅𝜆−𝜂𝜆)𝜏

−15𝑒−4(𝜅𝜆−𝜂𝜆)𝜏)𝜆𝑡 +
𝜀4𝜂𝜈

4𝜃𝜈

4𝜅𝜈
5 (3 − 33𝑒−𝜅𝜈𝜏 + 108𝑒−2𝜅𝜈𝜏

−135𝑒−3𝜅𝜈𝜏 + 57𝑒−4𝜅𝜈𝜏) +
𝛼4𝜂𝜆

4𝜃𝑧𝜅𝑧

(𝜅𝜆−𝜂𝜆)
6
(3 − 33𝑒−(𝜅𝜆−𝜂𝜆)𝜏

+108𝑒−2(𝜅𝜆−𝜂𝜆)𝜏 − 135𝑒−3(𝜅𝜆−𝜂𝜆)𝜏 + 57𝑒−4(𝜅𝜆−𝜂𝜆)𝜏)

+𝛼2𝜂𝜈
2𝜂𝜆

2 (
12𝜃𝜈

𝜅𝜈
4 (1 − 𝑒

−𝜅𝜈𝜏) +
12𝜅𝜆𝜃𝜆

(𝜅𝜆−𝜂𝜆)
4

∙ (1 − 𝑒−(𝜅𝜆−𝜂𝜆)𝜏) +
6𝑉𝑡

𝜅𝜈
3 ) (𝑒

−𝜅𝜈𝜏 − 4𝑒−2𝜅𝜈𝜏 + 3𝑒−3𝜅𝜈𝜏)

+
6𝜆𝑡

(𝜅𝜆−𝜂𝜆)
3 (𝑒

−(𝜅𝜆−𝜂𝜆)𝜏 − 4𝑒−2(𝜅𝜆−𝜂𝜆)𝜏 + 3𝑒−3(𝜅𝜆−𝜂𝜆)𝜏)

+
24𝜃𝜈

𝜅𝜈
3 (𝑒

−𝜅𝜈𝜏 − 𝑒−2𝜅𝜈𝜏) +
24𝜅𝜆𝜃𝜆

(𝜅𝜆−𝜂𝜆)
3 (𝑒

−(𝜅𝜆−𝜂𝜆)𝜏

−𝑒−2(𝜅𝜆−𝜂𝜆)𝜏) +
18𝜆𝑡

𝜅𝜈
2(𝜅𝜆−𝜂𝜆)

(𝑒−𝜅𝜈𝜏𝑒−(𝜅𝜆−𝜂𝜆)𝜏)

+
18𝜅𝜆𝜃𝜆

𝜅𝜈(𝜅𝜆−𝜂𝜆)
2 (𝑒

−𝜅𝜈𝜏𝑒−(𝜅𝜆−𝜂𝜆)𝜏) +
12𝜃𝜈

𝜅𝜈(𝜅𝜆−𝜂𝜆)

∙ (1 − 𝑒−(𝜅𝜈+𝜅𝜆−𝜂𝜆)𝜏) +
12𝜅𝜆𝜃𝜆

𝜅𝜈(𝜅𝜆−𝜂𝜆)
2 (1 − 𝑒

−(𝜅𝜈+𝜅𝜆−𝜂𝜆)𝜏))

  

The proof is omitted here. By combining the conclusions of 

the above two lemmas, we can directly present the following 

proposition, and its proof is also omitted here. 

 

Proposition 4.3: Under the SVJR model defined in Equation 

(1), given a truncation range [𝑎, 𝑏], the price at time 𝑡 of a 

VIX call option with strike price 𝑍  and maturity 𝑇  can be 

approximated by: 

 𝐶𝑡 ≈

100𝑃(𝑡, 𝑇) ∑  ∗ℜ𝑁−1
𝑛=0 [𝜑 (

𝑛𝜋

𝑏−𝑎
; 𝑉𝑡 , 𝑅𝑡 , 𝜆𝑡 , 𝜏) 𝑒

−𝑖𝑛𝜋
𝑎

𝑏−𝑎] 𝐴𝑛  

Here 𝜏 = 𝑇 − 𝑡 is the time to maturity of the option. 𝛹(∙) Is 

the conditional characteristic function defined in Proposition 

3.1? The coefficients 𝐴𝑛 come from Lemma 4.1, ℜ[∙] which 

takes the real part of complex numbers. 
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For a VIX futures contract maturing at 𝑇, its price 𝐹𝑡 
 

At time 𝑡 follows risk-neutral pricing: 

 𝐹𝑡 = 𝔼𝑡
ℚ(𝑉𝐼𝑋𝑇) = 100𝔼𝑡

ℚ
(√𝛿𝑇

2)  

This means the VIX futures price is the risk-neutral 

expectation of the VIX index. It comes from taking the square 

root of 𝛿𝑇
2 and scaling by 100. 

 

5. Conclusion 
 

This paper proposes a three-factor VIX option pricing model 

incorporating stochastic interest rates, stochastic volatility, 

and stochastic jump intensity. Theoretically, it pioneers the 

quantification of monetary policy’s transmission effect on 

market panic through an interest rate-jump coupling 

parameter. Methodologically, it enhances the COS algorithm 

to improve computational efficiency. Empirical results 

demonstrate that the model reduces pricing errors while 

exhibiting stronger robustness during policy adjustments and 

reveals significant interaction effects between interest rate 

parameters and jump decay rates. Future research may extend 

this model to more complex derivatives such as VIX futures 

options, further enriching the theory and practice of volatility 

derivatives pricing. 
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