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Abstract: This study addresses the pricing of outer performance option within the framework of a two-factor stochastic volatility 

jump-diffusion model. By integrating martingale theory, partial differential equation (PDE) techniques, the Feynman-Kac theorem, and 

the Fourier inversion transform, we derive a semi-closed-form pricing formula for outer performance option. The methodology rigorously 

accounts for both stochastic volatility components and jump risk, thus providing a comprehensive solution to the complex valuation 

problem. 
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1. Introduction 
 

In the rapidly developing derivatives market, how to price 

options reasonably is a very important research topic. Among 

these derivatives, outer performance option has emerged as 

essential instruments for financial practitioners, offering a 

means to hedge risk, optimize portfolios, and engage in 

speculative trading by capitalizing on the price differential 

between the two underlying assets. However, due to the 

interaction of various market factors (such as stochastic 

volatility and abrupt price jumps), the accurate pricing of 

outer performance option is facing great challenges. 

 

The development of option pricing models has been marked 

by a series of significant milestones. Black-Scholes model [1] 

is a revolutionary contribution to financial economics. By 

assuming that the underlying asset price follows the geometric 

Brownian motion and the interest rate and volatility remain 

unchanged, the basic framework of option valuation is 

established. However, the Black-Scholes model fails to 

capture several key empirical characteristics of the real 

financial market, including volatility clustering, the peak and 

thick tail of yield distribution, and the occurrence of extreme 

events. To address these limitations, follow-up studies have 

focused on incorporating more realistic assumptions. 

 

Researchers have explored two primary directions for 

enhancing model accuracy. On one hand, the introduction of 

jump risk into asset price models, as proposed by Merton [2] 

and further developed by Kou [3], has given rise to 

jump-diffusion models. These models effectively explain the 

fat-tailed characteristics of financial returns by integrating 

discrete jump processes with continuous diffusion dynamics. 

On the other hand, stochastic volatility models, exemplified 

by the Heston model [4], have been developed to model the 

time-varying nature of volatility. Bates [5] merged these two 

lines of research, combining stochastic volatility and 

jump-diffusion components to provide a more comprehensive 

description of asset price movements. Scott [6] extended this 

framework by considering stochastic interest rates alongside 

stochastic volatility and jumps, while Duffie et al. [7] 

proposed affine jump-diffusion models that simplify the  

 

 

mathematical treatment of complex market dynamics. Deng 

[8] investigated option pricing within a two-factor stochastic 

volatility framework, taking into account jump-diffusion 

factors. However, the existing models still can not fully reflect 

the complexity of the financial market. Previous studies have 

adopted a single factor framework or only considered one 

type of uncertainty, ignoring both multiple risk sources and 

the volatility under the joint action of multiple factors. This 

limitation has prompted people to develop more complex 

multifactor models. 

 

This article aims to contribute to the literature by developing a 

new option pricing framework under the two-factor jump- 

diffusion model. Specifically, we assume that the price of the 

underlying asset is influenced by two independent random 

volatility factors that can capture market fluctuations of 

different frequencies and various types of market information. 

The addition of jump diffusion process enables the model to 

consider sudden price changes caused by unexpected events, 

thereby providing more realistic asset prices. We derived a 

semi closed form pricing formula for outer performance 

option using martingale methods, partial differential 

equations, and Fourier transform. 

 

2. Model Formulation 
 

Assume there is a frictionless and arbitrage-free financial 

market that allows continuous trading within the trading 

period [0, T]. The market includes a risk-free bond and two 

risky assets (the underlying assets). Let 𝑊𝑡 =
(𝑊1𝑡 ,𝑊2𝑡 , 𝐵1𝑡 , 𝐵2𝑡)  be a 4-dimensional standard Brownian 

motion and 𝑁𝑡 = (𝑁1𝑡
𝑠 , 𝑁2𝑡

𝑠 , 𝑁𝑡
𝑐) be a 3-dimensional Poisson 

process with intensity parameters (𝜆1, 𝜆2, 𝜆3) on the complete 

probability space (𝛺, ℱ, {ℱ𝑡}𝑡≥0, 𝑄).Considering the jumps in 

the underlying assets in the market, the risk-neutral measure is 

not unique, hence we select an appropriate equivalent 

martingale measure Q . Following the idea of Duffie et al. [7], 

under the measure Q , the logarithms of the prices of the two 

underlying assets，whereX1t = lnS1t  and 𝑋2𝑡 = 𝑙𝑛𝑆2𝑡 , and 

their volatilities V1t  and V2t  satisfy the following system of 

stochastic differential equations: 
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 𝑑𝑋1𝑡 = (𝑟𝑡 − 𝜆𝜅1 −

1

2
𝑉1𝑡) 𝑑𝑡 + √𝑉1𝑡𝑑𝑊1𝑡 + 𝐽1𝑡

𝑠 𝑑𝑁1𝑡
𝑠 + 𝐽1𝑡

𝑐 𝑑𝑁𝑡
𝑐 ,

𝑑𝑋2𝑡 = (𝑟𝑡 − 𝜆𝜅2 −
1

2
𝑉2𝑡) 𝑑𝑡 + √𝑉2𝑡𝑑𝑊2𝑡 + 𝐽2𝑡

𝑠 𝑑𝑁2𝑡
𝑠 + 𝐽2𝑡

𝑐 𝑑𝑁𝑡
𝑐 ,

𝑑𝑉1𝑡 = 𝛼1(𝜃1 − 𝑉1𝑡)𝑑𝑡 + 𝜎1√𝑉1𝑡𝑑𝐵1𝑡 ,

𝑑𝑉2𝑡 = 𝛼2(𝜃2 − 𝑉2𝑡)𝑑𝑡 + 𝜎2√𝑉2𝑡𝑑𝐵2𝑡 .

 (1) 

Assume 𝑟𝑡  is the short-term instantaneous interest rate and 

𝑟𝑡 = 𝑉1𝑡 + 𝑉2𝑡 , where the correlation coefficient  

𝑐𝑜𝑣(𝑑𝑊1𝑡 , 𝑑𝐵1𝑡) = 𝜌1𝑑𝑡, 𝑐𝑜𝑣(𝑑𝑊2𝑡 , 𝑑𝐵2𝑡) = 𝜌2𝑑𝑡 , and 𝜌1 ,  

𝜌2  are constants. The standard Brownian motions 𝑊𝑡 =
(𝑊1𝑡 ,𝑊2𝑡 , 𝐵1𝑡 , 𝐵2𝑡)  and the Poisson process 𝑁𝑡 =
(𝑁1𝑡

𝑠 , 𝑁2𝑡
𝑠 , 𝑁𝑡

𝑐) are independent of each other; the non-negative 

constants 𝛼𝑗 , 𝜃𝑗, 𝜎𝑗 are respectively the mean reversion speed, 

long-term mean level, and instantaneous volatility of the two 

volatilities, and satisfy 2𝛼𝑗𝜃𝑗 ≥ 𝜎𝑗
2(𝑗 = 1,2) . Assume the 

individual relative jump size sequences 𝑒𝐽1𝑡
𝑠

 of 𝑆1𝑡  are 

independently and identically distributed and satisfy 𝐽1𝑡
𝑠 ∼

𝑁(𝜇1,𝑠, 𝜎1,𝑠
2 ), the individual relative jump size sequences 𝑒𝐽2𝑡

𝑠
 

of 𝑆2𝑡  are independently and identically distributed and 

satisfy 𝐽2𝑡
𝑠 ∼ 𝑁(𝜇2,𝑠, 𝜎2,𝑠

2 ), and the common jump relative size 

sequence (𝑒𝐽1𝑡
𝑐
, 𝑒𝐽2𝑡

𝑐
)  of 𝑆1𝑡  and 𝑆2𝑡  are independently and 

identically distributed and satisfy 𝐽𝑡
𝑐 = (𝐽1𝑡

𝑐 , 𝐽2𝑡
𝑐 ) ∼

𝑁(𝜇1𝑐, 𝜇2𝑐, 𝜎1𝑐
2 , 𝜎2𝑐

2 , 𝜌𝑐) . Further assume 𝐽1𝑡
𝑠 , 𝐽2𝑡

𝑠 , 𝐽𝑡
𝑐  are 

mutually independent, and independent of the Brownian 

motion 𝑊𝑡 , Poisson process 𝑁𝑡 . Let 𝜎 -algebra ℱ𝑡  be the 

reference family jointly generated by 𝑊𝑡  and 𝑁𝑡  and 

𝐽1𝑡
𝑠 ,  𝐽2𝑡

𝑠 , 𝐽𝑡
𝑐 . Denote the joint jump size of 𝑋1𝑡 , 𝑋2𝑡  as the 

variable 𝜗 , assuming it has the following jump 

transformation: 

 𝜗(𝑐1, 𝑐2) =
𝜆1𝜗1(𝑐1)+𝜆2𝜗2(𝑐2)+𝜆3𝜗𝑐(𝑐1,𝑐2)

𝜆
,  

 𝜆 = 𝜆1 + 𝜆2 + 𝜆3,  𝜅1 = 𝜗(1,0) − 1, 𝜅2 = 𝜗(0,1) − 1,  

 𝜗1(𝑐) = 𝑒𝑥𝑝 (𝜇1𝑠𝑐 +
1

2
𝜎1𝑠
2 𝑐2) , 𝜗2(𝑐) = 𝑒𝑥𝑝 (𝜇2𝑠𝑐 +

1

2
𝜎2𝑠
2 𝑐2),  

 𝜗𝑐(𝑐1, 𝑐2) = 𝑒𝑥𝑝 (𝜇1𝑐𝑐11 + 𝜇2𝑐𝑐12 +
1

2
𝜎1𝑐
2 𝑐1

2 +
1

2
𝜎2𝑐
2 𝑐2

2 +

𝜌𝑐𝜎1𝑐𝜎2𝑐𝑐1𝑐2).  

Let  

 𝑋1𝑡 = 𝑙𝑛𝑆1𝑡 , 𝑋2𝑡 = 𝑙𝑛𝑆2𝑡  

and define 𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏; 𝑢1, 𝑢2, 𝑢3, 𝑢4)  as the joint 

characteristic function of the two asset prices: 

𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏; 𝑢1, 𝑢2, 𝑢3, 𝑢4)

= 𝔼ℚ {e−∫ rs
T
t  ds+iu1X1T+iu2X2T+iu3V1T+iu4V2T ∣ ℱt}

= 𝔼ℚ {e−∫ rs
T
t  ds+iu1X1T+iu2X2T+iu3V1T+iu4V2T ∣ X1t = x1, X2t

= x2, V1t = v1, V2t = v2} 

= 𝔼t
ℚ
{e−∫ rs

T
t  ds+iu1X1T+iu2X2T+iu3V1T+iu4V2T}, 

Where 𝜏 = 𝑇 − 𝑡, 𝑡 ∈ [0, 𝑇], 𝑖 is the imaginary unit with 𝑖 =

√−1, 𝑢1, 𝑢2, 𝑢3, 𝑢4 ∈ ℂ , and 𝐸𝑡
𝑄{⋅}  denotes the conditional 

expectation under the measure 𝑄  based on the reference 

filtration ℱ𝑡. 
 

Proposition 1: Assume the asset prices of the two underlying 

assets satisfy (1). Then the joint characteristic function is: 

 
𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏; 𝑢1, 𝑢2, 𝑢3, 𝑢4) =

𝑒𝑖𝑢1𝑥1+𝑖𝑢2𝑥2+𝐴(𝜏,𝑢1,𝑢2,𝑢3,𝑢4)𝑣1+𝐵(𝜏,𝑢1,𝑢2,𝑢3,𝑢4)𝑣2+𝐶(𝜏,𝑢1,𝑢2,𝑢3,𝑢4),
  

where 

 𝐴(𝜏) =
1

𝜎1
2 (𝑎1(𝑢1) + 𝑐1(𝑢1, 𝑢2) −

2𝑐1(𝑢1,𝑢2)

1−𝑑1(𝑢1,𝑢2,𝑢3)𝑒
−𝑐1(𝑢1,𝑢2)𝜏

),  

 𝐵(𝜏) =
1

𝜎2
2 (𝑎2(𝑢2) + 𝑐2(𝑢1, 𝑢2) −

2𝑐2(𝑢1,𝑢2)

1−𝑑2(𝑢1,𝑢2,𝑢4)𝑒
−𝑐2(𝑢1,𝑢2)𝜏

),  

 

𝐶(𝜏) = 𝛼1𝜃1(
1

𝜎1
2 ((𝑎1(𝑢1) + 𝑐1(𝑢1, 𝑢2))𝜏

−2 𝑙𝑛
1−𝑑1(𝑢1,𝑢2,𝑢3)𝑒

−𝑐1(𝑢1,𝑢2)𝜏

1−𝑑1(𝑢1,𝑢2,𝑢3)
))

+𝛼2𝜃2(
1

𝜎2
2 ((𝑎2(𝑢2) + 𝑐2(𝑢1, 𝑢2))𝜏

−2 𝑙𝑛
1−𝑑2(𝑢1,𝑢2,𝑢4)𝑒

−𝑐2(𝑢1,𝑢2)𝜏

1−𝑑2(𝑢1,𝑢2,𝑢4)
))

+(−𝑖𝑢1𝜆𝜅1 − 𝑖𝑢2𝜆𝜅2 + 𝜆1𝜗1(𝑖𝑢1)

+𝜆2𝜗2(𝑖𝑢2) + 𝜆3𝜗𝑐(𝑖𝑢1, 𝑖𝑢2) − 𝜆)𝜏,

  

 𝑎1(𝑢1) = 𝛼1 − 𝑖𝑢1𝜎1𝜌1,  

 𝑏1(𝑢1, 𝑢2) =
1

2
𝑖𝑢1 + 𝑖𝑢2 −

1

2
𝑢1
2 − 1,  

 𝑐1(𝑢1, 𝑢2) = √𝑎1
2(𝑢1) − 2𝜎1

2𝑏1(𝑢1, 𝑢2),  

 𝑑1(𝑢1, 𝑢2, 𝑢3) =
𝑖𝑢3𝜎1

2−𝑎1(𝑢1)+𝑐1(𝑢1,𝑢2)

𝑖𝑢3𝜎1
2−𝑎1(𝑢1)−𝑐1(𝑢1,𝑢2)

,  

 𝑎2(𝑢2) = 𝛼2 − 𝑖𝑢2𝜎2𝜌2,  

 𝑏2(𝑢1, 𝑢2) =
1

2
𝑖𝑢2 + 𝑖𝑢1 −

1

2
𝑢2
2 − 1,  

 𝑐2(𝑢1, 𝑢2) = √𝑎2
2(𝑢2) − 2𝜎2

2𝑏2(𝑢1, 𝑢2),  

 𝑑2(𝑢1, 𝑢2, 𝑢4) =
𝑖𝑢4𝜎2

2−𝑎2(𝑢2)+𝑐2(𝑢1,𝑢2)

𝑖𝑢4𝜎2
2−𝑎2(𝑢2)−𝑐2(𝑢1,𝑢2)

.  

The proof of Proposition 1 

 

According to the semimartingale Itô formula and the  

Feynman-Kac theorem, function 

𝜓 = 𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏) = 𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏; 𝑢1, 𝑢2, 𝑢3, 𝑢4),  

satisfes the following partial differential integral equation:  

 

{
 
 
 
 
 
 

 
 
 
 
 
 −

𝜕𝜓

𝜕𝜏
+ (

1

2
𝑣1 + 𝑣2 − 𝜆𝜅1)

𝜕𝜓

𝜕𝑥1
+ (𝑣1 +

1

2
𝑣2 − 𝜆𝜅2)

𝜕𝜓

𝜕𝑥2

+
𝑣1

2

𝜕2𝜓

𝜕𝑥1
2 +

𝑣2

2

𝜕2𝜓

𝜕𝑥2
2 + 𝛼1(𝜃1 − 𝑣1)

𝜕𝜓

𝜕𝑣1
+ 𝛼2(𝜃2 − 𝑣2)

𝜕𝜓

𝜕𝑣2

+
1

2
𝜎1
2𝑣1

𝜕2𝜓

𝜕𝑣1
2 +

1

2
𝜎2
2𝑣2

𝜕2𝜓

𝜕𝑣2
2 +

𝜕2𝜓

𝜕𝑥1𝜕𝑣1
𝑣1𝜎1𝜌1

+
𝜕2𝜓

𝜕𝑥2𝜕𝑣2
𝑣2𝜎2𝜌2 − (𝑣1 + 𝑣2)𝜓

+𝜆1𝐸𝑡[𝜓(𝑥1 + 𝐽1𝑡
𝑠 , 𝑥2, 𝑣1, 𝑣2, 𝜏) − 𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏)]

+𝜆2𝐸𝑡[𝜓(𝑥1, 𝑥2 + 𝐽2𝑡
𝑠 , 𝑣1, 𝑣2, 𝜏) − 𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏)]

+𝜆3𝐸𝑡[𝜓(𝑥1 + 𝐽𝑡
𝑐, 𝑥2 + 𝐽𝑡

𝑐, 𝑣1, 𝑣2, 𝜏) − 𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏)]

= 0,

𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 0) = 𝑒
𝑖𝑢1𝑋1𝑇+𝑖𝑢2𝑋2𝑇+𝑖𝑢3𝑉1𝑇+𝑖𝑢4𝑉2𝑇 .

(2) 

According to Duffie et al. [7], equation (2) has the following  

exponential form solution: 

35
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𝜓(𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝜏)

= 𝑒𝑖𝑢1𝑥1+𝑖𝑢2𝑥2+𝐴(𝜏,𝑢1,𝑢2,𝑢3,𝑢4)𝑣1+𝐵(𝜏,𝑢1,𝑢2,𝑢3,𝑢4)𝑣2+𝐶(𝜏,𝑢1,𝑢2,𝑢3,𝑢4).
  

Substituting the above expressions into the partial differential  

integral equation (2): 

 

−(
𝜕𝐴

𝜕𝜏
𝑣1 +

𝜕𝐵

𝜕𝜏
𝑣2 +

𝜕𝐶

𝜕𝜏
) + (

1

2
𝑣1 + 𝑣2 − 𝜆𝜅1) 𝑖𝑢1

+(𝑣1 +
1

2
𝑣2 − 𝜆𝜅2) 𝑖𝑢2 +

𝑣1

2
(𝑖𝑢1)

2 +
𝑣2

2
(𝑖𝑢2)

2

+𝛼1(𝜃1 − 𝑣1)𝐴 + 𝛼2(𝜃2 − 𝑣2)𝐵 +
1

2
𝜎1
2𝑣1𝐴

2

+
1

2
𝜎2
2𝑣2𝐵

2 + 𝑖𝑢1𝜎1𝜌1𝑣1𝐴 + 𝑖𝑢2𝜎2𝜌2𝑣2𝐵 − 𝑣1 − 𝑣2

+𝜆1𝜗1(𝑖𝑢1) + 𝜆2𝜗2(𝑖𝑢2) + 𝜆3𝜗𝑐(𝑖𝑢1, 𝑖𝑢2) − 𝜆 = 0.

(3)  

Let 𝐴(𝜏) = 𝐴(𝜏, 𝑢1, 𝑢2, 𝑢3, 𝑢4) , 𝐵(𝜏) = 𝐵(𝜏, 𝑢1, 𝑢2, 𝑢3, 𝑢4) , 

𝐶(𝜏) = 𝐶(𝜏, 𝑢1, 𝑢2, 𝑢3, 𝑢4)  to satisfy the following three 

ordinary differential equations (ODEs): 

 {

𝜕𝐴(𝜏)

𝜕𝜏
=

1

2
𝜎1
2𝐴2(𝜏) + (𝑖𝑢1𝜎1𝜌1 − 𝛼1)𝐴(𝜏)

+
1

2
𝑖𝑢1 + 𝑖𝑢2 −

1

2
𝑢1
2 − 1,

𝐴(0) = 𝑖𝑢3.

 (4) 

 {

𝜕𝐵(𝜏)

𝜕𝜏
=

1

2
𝜎2
2𝐵2(𝜏) + (𝑖𝑢2𝜎2𝜌2 − 𝛼2)𝐵(𝜏)

+
1

2
𝑖𝑢2 + 𝑖𝑢1 −

1

2
𝑢2
2 − 1,

𝐵(0) = 𝑖𝑢4.

 (5) 

And 

 

{
 
 

 
 
𝜕𝐶(𝜏)

𝜕𝜏
= 𝛼1𝜃1𝐴(𝜏) + 𝛼2𝜃2𝐵(𝜏) − 𝑖𝑢1𝜆𝜅1 − 𝑖𝑢2𝜆𝜅2

+𝜆1𝜗1(𝑖𝑢1) + 𝜆2𝜗2(𝑖𝑢2)

+𝜆3𝜗𝐶(𝑖𝑢1, 𝑖𝑢2) − 𝜆,

𝐶(0) = 0.

 (6) 

First, solve Equation (4) and rewrite it as: 

 {
𝜕𝐴(𝜏)

𝜕𝜏
=

1

2
𝜎1
2𝐴2(𝜏) − 𝑎1(𝑢1)𝐴(𝜏) + 𝑏1(𝑢1, 𝑢2),

𝐴(0) = 𝑖𝑢3.
 (7) 

Integrate both sides of the first equation in (7) over the domain 

[0, 𝜏] simultaneously, and we obtain:  

 ∫
𝑑𝐴(𝑠)

1

2
𝜎1
2𝐴2(𝑠)−𝑎1(𝑢1)𝐴(𝑠)+𝑏1(𝑢1,𝑢2)

𝜏

0
= 𝜏.  

Then apply the indefinite integral formula: 

 ∫
𝑑𝑥

𝑎𝑥2−𝑏𝑥+𝑐
=

1

−√𝑏2−4𝑎𝑐
𝑙𝑛 [

2𝑎𝑥−𝑏+√𝑏2−4𝑎𝑐

2𝑎𝑥−𝑏−√𝑏2−4𝑎𝑐
].  

Combine with the initial condition A(0) = iu3: 

 

𝜎1
2𝐴(𝜏)−𝑎1(𝑢1)+𝑐1(𝑢1,𝑢2)

𝜎1
2𝐴(𝜏)−𝑎1(𝑢1)−𝑐1(𝑢1,𝑢2)

=
𝑖𝑢3𝜎1

2−𝑎1(𝑢1)+𝑐1(𝑢1,𝑢2)

𝑖𝑢3𝜎1
2−𝑎1(𝑢1)−𝑐1(𝑢1,𝑢2)

𝑒−𝑐1(𝑢1,𝑢2)𝜏

= 𝑑1(𝑢1, 𝑢2, 𝑢3)𝑒
−𝑐1(𝑢1,𝑢2)𝜏 .

  

By rearrangement, we can obtain: 

 𝐴(𝜏) =
1

𝜎1
2 (𝑎1(𝑢1) + 𝑐1(𝑢1, 𝑢2) −

2𝑐1(𝑢1,𝑢2)

1−𝑑1(𝑢1,𝑢2,𝑢3)𝑒
−𝑐1(𝑢1,𝑢2)𝜏

) .
 (8) 

Next, solve Equation (5). First, rewrite it as 

 {
𝜕𝐵(𝜏)

𝜕𝜏
=

1

2
𝜎2
2𝐵2(𝜏) − 𝑎2(𝑢2)𝐵(𝜏) + 𝑏2(𝑢1, 𝑢2),

𝐵(0) = 𝑖𝑢4.
 (9) 

Using the same method as above, we can obtain:  

 𝐵(𝜏) =
1

𝜎2
2 (𝑎2(𝑢2) + 𝑐2(𝑢1, 𝑢2) −

2𝑐2(𝑢1,𝑢2)

1−𝑑2(𝑢1,𝑢2,𝑢4)𝑒
−𝑐2(𝑢1,𝑢2)𝜏

) .  

                                                                                        (10) 

Finally, solve Equation (6): 

 𝐶(𝜏) = 𝛼1𝜃1 ∫ 𝐴
𝜏

0
(𝑠)𝑑𝑠 + 𝛼2𝜃2 ∫ 𝐵

𝜏

0
(𝑠)𝑑𝑠 + (−𝑖𝑢1𝜆𝜅1 −

𝑖𝑢2𝜆𝜅2 + 𝜆1𝜗1(𝑖𝑢1) + 𝜆2𝜗2(𝑖𝑢2) + 𝜆3𝜗𝑐(𝑖𝑢1, 𝑖𝑢2) − 𝜆)𝜏.
 (11) 

Substitute 𝐴(𝜏) and 𝐵(𝜏) into the two definite integrals on the 

right - hand side of Equation (11). After tedious calculations, 

we obtain respectively:  

 

∫ 𝐴
𝜏

0
(𝑠) 𝑑𝑠 =

1

𝜎1
2 ((𝑎1(𝑢1) + 𝑐1(𝑢1, 𝑢2))𝜏 −  2 𝑙𝑛

1−𝑑1(𝑢1,𝑢2,𝑢3)𝑒
−𝑐1(𝑢1,𝑢2)𝜏

1−𝑑1(𝑢1,𝑢2,𝑢3)
) ,

 (12) 

 

∫ 𝐵
𝜏

0
(𝑠)𝑑𝑠 =

1

𝜎2
2 ((𝑎2(𝑢2) + 𝑐2(𝑢1, 𝑢2))𝜏 − 2 𝑙𝑛

1−𝑑2(𝑢1,𝑢2,𝑢4)𝑒
−𝑐2(𝑢1,𝑢2)𝜏

1−𝑑2(𝑢1,𝑢2,𝑢4)
) .

 (13) 

According to Equations (8) - (13), Proposition 1 is proved.  

 

3. Pricing of Outer Performance Option 
 

Outer performance option is an option whose exercise is 

determined by the difference in returns between two different 

underlying assets, and its payoff depends on the price 

difference between the two assets at maturity. Specifically, 

the payoff of outer performance option equals the positive 

part of the difference between the prices of the two assets. 

That is, the payoff of the option at maturity T is equal to: 

 𝑉(𝑇, 𝑆1𝑇 , 𝑆2𝑇) = 𝑚𝑎𝑥{ 𝑆1𝑇 − 𝑆2𝑇 , 0}. (14) 

Next, we derive its pricing formula. 

 

Proposition 2: Given a European outer performance option on 

two underlying assets maturing at time T that satisfies Model 

(1), the option price at time t is given by: 

 
𝐶(𝑡, 𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝑇) =
𝑆1𝑡𝛱1(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2) − 𝑆2𝑡𝛱2(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2).

  

Where 

 𝛱𝑗(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2) =
1

2
+

1

𝜋
∫ 𝑅
+∞

0
[
𝑒−𝑖𝑢𝑋2𝑇𝜑𝑗(𝑢)

𝑖𝑢
] 𝑑𝑢,

 𝜑1(𝑢) = 𝐸𝑡
𝑄1[𝑒𝑖𝑢𝑋1𝑇] = 𝐸𝑡 [

𝑒−∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠+(𝑖𝑢+1)𝑋1𝑇

𝑆1𝑡
] =

𝜓(𝜏,𝑥1,𝑥2,𝑣1,𝑣2;𝑢−𝑖,0,0,0)

𝜓(𝜏,𝑥1,𝑥2,𝑣1,𝑣2;−𝑖,0,0,0)
,  

 𝜑2(𝑢) = 𝐸𝑡
𝑄2[𝑒𝑖𝑢𝑋1𝑇] = 𝐸𝑡 [

𝑒−∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠+𝑖𝑢𝑋1𝑇+𝑋2𝑇

𝑆2𝑡
] =

𝜓(𝜏,𝑥1,𝑥2,𝑣1,𝑣2;𝑢,−𝑖,0,0)

𝜓(𝜏,𝑥1,𝑥2,𝑣1,𝑣2;0,−𝑖,0,0)
.  

The proof of Proposition 2 

 

According to the risk-neutral pricing principle, we know that: 
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𝐶(𝑡, 𝑥1, 𝑥2, 𝑣1, 𝑣2, 𝑇) = 𝔼𝑡 [𝑒
−∫ 𝑟𝑠

𝑇
𝑡 𝑑𝑠(𝑆1𝑇 − 𝑆2𝑇)

+ ∣ ℱ𝑡] = 𝔼 [𝑒
−∫ 𝑟𝑠

𝑇
𝑡 𝑑𝑠𝑆1𝑇1(𝑋1𝑇≥𝑋2𝑇) ∣ ℱ𝑡] − 𝔼 [𝑒

−∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠𝑆2𝑇1(𝑋1𝑇≥𝑋2𝑇) ∣ ℱ𝑡]

= 𝑆1𝑡𝑄1(𝑋1𝑇 ≥ 𝑋2𝑇) − 𝑆2𝑡𝑄2(𝑋1𝑇 ≥ 𝑋2𝑇) = 𝑆1𝑡𝛱1(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2) − 𝑆2𝑡𝛱2(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2).
  

Where 𝛱𝑗(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2) = 𝑄𝑗(𝑋1𝑇 ≥ 𝑋2𝑇), 𝑗 = 1,2  and 

𝑄1, 𝑄2  are equivalent martingale measures of Q. Their 

Radon-Nikodym derivatives are respectively: 

 𝑑𝑄1

𝑑𝑄
=

𝑒−∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠𝑆1𝑇

𝑆1𝑡
,  

 𝑑𝑄2

𝑑𝑄
=

𝑒−∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠𝑆2𝑇

𝑆2𝑡
.  

Applying the Fourier inversion method, we obtain: 

 𝛱𝑗(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2) =
1

2
+

1

𝜋
∫ 𝑅
+∞

0
[
𝑒−𝑖𝑢𝑋2𝑇𝜑𝑗(𝑢)

𝑖𝑢
] 𝑑𝑢,  

And 

𝜑1(𝑢) = 𝐸𝑡
𝑄1[𝑒𝑖𝑢𝑋1𝑇] = 𝐸𝑡 [

𝑒−∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠+(𝑖𝑢+1)𝑋1𝑇

𝑆1𝑡
] 

=
𝜓(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2; 𝑢 − 𝑖, 0,0,0)

𝜓(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2; −𝑖, 0,0,0)
, 

𝜑2(𝑢) = 𝐸𝑡
𝑄2[𝑒𝑖𝑢𝑋1𝑇] = 𝐸𝑡 [

𝑒−∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠+𝑖𝑢𝑋1𝑇+𝑋2𝑇

𝑆2𝑡
] 

=
𝜓(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2; 𝑢, −𝑖, 0,0)

𝜓(𝜏, 𝑥1, 𝑥2, 𝑣1, 𝑣2; 0, −𝑖, 0,0)
. 

Here, 𝔼𝑡
𝑄𝑗
[⋅]  denotes the conditional expectation under the 

probability measure 𝑄𝑗  for 𝑗 = 1,2. 

 

4. Conclusion 
 

In this paper, under the assumptions of stochastic interest rates, 

stochastic volatilities, and with the inclusion of 

jump-diffusion factors in the two underlying assets, a 

semi-closed-form analytical solution for outer performance 

option pricing is derived using characteristic function 

methods and Fourier inversion transforms. Compared with 

traditional single-factor models, the proposed model exhibits 

significant advantages in capturing market dynamics. 
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