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Abstract: This paper investigates the pricing of digital power exchange options under a non-affine stochastic volatility model. We first 

derive an approximate characteristic function for the logarithmic price distribution of underlying assets through perturbation analysis of 

partial differential equations. Subsequently, the analytical expression for digital power exchange options is obtained by employing Fourier 

transform and its inverse transformation.  
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1. Introduction 
 

In 1973, Black and Scholes [1] proposed the Black-Scholes 

model (hereafter the BS model). However, extensive 

empirical studies have revealed inconsistencies between the 

BS model's assumptions — geometric Brownian motion for 

stock prices, normally distributed returns, and constant 

volatility — and observed market phenomena such as 

leptokurtic and heavy-tailed distributions and volatility smiles. 

To better characterize these stylized features of financial asset 

returns and volatility dynamics, scholars have extended the 

BS model by developing influential alternative frameworks. 

Examples include the constant elasticity of variance model by 

Cox and Ross [2], the jump-diffusion model by Merton [3], 

and stochastic volatility models by Hull and White [4], Stein 

and Stein [5], and Heston [6]. Among these, the Heston model 

stands as a canonical affine stochastic volatility model, 

providing closed-form pricing formulas for plain European 

options and effectively explaining the volatility smile 

phenomenon. Nevertheless, recent research indicates that the 

square-root volatility process specification in affine models 

inadequately captures nonlinear characteristics of financial 

time series. This limitation has spurred significant academic 

interest in non-affine stochastic volatility models. Empirical 

results demonstrate the superior performance of non-affine 

specifications: comparative analyses reveal that non-affine 

stochastic volatility models reduce root mean square pricing 

errors by 25–27% compared to their affine counterparts. 

 

In 1978, Margrabe pioneered the use of partial differential 

equation (PDE) methods to derive a closed-form pricing 

formula for exchange options under the Black-Scholes (B-S) 

framework [7]. Subsequent research on exchange option 

pricing, coupled with the diversification of financial markets, 

has led to the development of numerous innovative variants. 

These include power exchange options, Asian exchange 

options, and barrier exchange options, among others. These 

advancements have not only enriched the theoretical 

landscape of exchange options but also provided robust 

methodological foundations for their pricing and further 

innovation in financial engineering. 

 

In non-affine stochastic volatility models, the partial 

differential equation (PDE) governing the characteristic 

function of the log-price distribution of the underlying asset is 

inherently nonlinear, which precludes the derivation of an 

exact analytical expression for the characteristic function and 

typically obstructs closed-form solutions for European option 

prices. To better capture the dynamic behavior of asset prices 

and develop a computationally efficient numerical method for 

pricing options under such models, this study proposes an 

innovative approach. First, we perform a linearization of the 

nonlinear PDE associated with the characteristic function in 

non-affine stochastic volatility frameworks. Subsequently, by 

leveraging Fourier transform techniques and their inverse, we 

derive an approximate analytical representation of the 

characteristic function.  

 

2. Market Models and Preliminaries 
 

This methodology not only enhances computational 

tractability but also bridges the gap between theoretical 

modeling and practical pricing applications in complex 

volatility environments. Let 𝑊𝑡 =

(𝑊1𝑡
𝑠1 ,𝑊2𝑡

𝑠1 ,𝑊1𝑡
𝑠2 ,𝑊2𝑡

𝑠2 ,𝑊1𝑡
𝑣 ,𝑊2𝑡

𝑣 )  denote a 6-dimensional 

standard Brownian motion defined on the complete 

probability space (𝛺, ℱ, ℱ𝑡 , 𝑄) Due to the presence of jumps 

in the underlying asset prices, the equivalent martingale 

measure is not unique. Following the approach of [8] we 

select an appropriate equivalent martingale measure 𝑄 under 

which the discounted price processes of risky assets become 

martingales. Consider two risky assets 𝑆1𝑡  and 𝑆2𝑡  in the 

market, with their logarithmic prices denoted by 𝑋2𝑡 = 𝑙𝑛 𝑆2𝑡, 
respectively. Let 𝑉1𝑡  and 𝑉2𝑡  represent the long-term and 

short-term volatility rates. The measure 𝑄 is characterized by 

the following system of stochastic differential equations: 

 

{
 
 

 
 𝑑𝑋1𝑡 = 𝑅𝑡𝑑𝑡 + 𝜎11√𝑉1𝑡𝑑𝑊1𝑡

𝑠1 + 𝜎12√𝑉2𝑡𝑑𝑊2𝑡
𝑠1 ,

𝑑𝑋2𝑡 = 𝑅𝑡𝑑𝑡 + 𝜎21√𝑉1𝑡𝑑𝑊1𝑡
𝑠2 + 𝜎22√𝑉2𝑡𝑑𝑊2𝑡

𝑠2 ,

𝑑𝑉1𝑡 = 𝛽1(𝜃1 − 𝑉1𝑡)𝑑𝑡 + 𝜎1𝑉1𝑡
𝛾/2
𝑑𝑊1𝑡

𝑣 ,

𝑑𝑉2𝑡 = 𝛽2(𝜃2 − 𝑉2𝑡)𝑑𝑡 + 𝜎2𝑉2𝑡
𝛾/2
𝑑𝑊2𝑡

𝑣 .

 (1) 

where the correlations between Brownian motions are given 

by: 

 corr⟨𝑑𝑊1𝑡
𝑠1 , 𝑑𝑊1𝑡

𝑠2⟩ = 𝜌1,  corr⟨𝑑𝑊2𝑡
𝑠1 , 𝑑𝑊2𝑡

𝑠2⟩ = 𝜌2,  

 corr⟨𝑑𝑊1𝑡
𝑠1 , 𝑑𝑊1𝑡

𝑣 ⟩ = 𝜌11,  corr⟨𝑑𝑊2𝑡
𝑠1 , 𝑑𝑊2𝑡

𝑣 ⟩ = 𝜌12,  

 corr⟨𝑑𝑊1𝑡
𝑠2 , 𝑑𝑊1𝑡

𝑣 ⟩ = 𝜌21,  corr⟨𝑑𝑊2𝑡
𝑠2 , 𝑑𝑊2𝑡

𝑣 ⟩ = 𝜌22.  
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Here, 𝜌𝑖𝑗  (i,j=1,2) are constants, and all other Brownian 

motions are mutually independent. The coefficients 𝜎𝑖1, 𝜎𝑖2 

represent the long-term and short-term volatility coefficients 

for assets 𝑆1𝑡 and 𝑆2𝑡 respectively, and are non-negative. The 

non-negative constants 𝛽𝑖 , 𝜃𝑖  and 𝜎𝑖  represent the mean 

reversion speed, long-term mean level, and volatility of 

volatility for the two variance processes, respectively, and 

satisfy the Feller condition 2𝛽𝑖𝜃𝑖 > 𝜎𝑖
2 . Following [9], the 

risk-free rate 𝑅𝑡  is modeled as 𝑅𝑡 = 𝜗0 + 𝜗1𝑉1𝑡 + 𝜗2𝑉2𝑡 , 

where 𝜗0, 𝜗1 and 𝜗2 are real constants. 

 

3. Characteristic Function 
 

Under the measure Q the joint discounted conditional 

characteristic function of the random variables 𝑋𝑖𝑡, 𝑉𝑖𝑡 i=(1,2), 

is defined as: 

 

Ψ(𝑡, 𝑥1𝑡 , 𝑥2𝑡 , 𝑣1𝑡 , 𝑣2𝑡; 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑇)

= 𝐸𝑄[𝑒−𝑟(𝑇−𝑡) + 𝑖𝑢1𝑋1𝑇 + 𝑖𝑢2𝑋2𝑇 + 𝑖𝑢3𝑣1𝑇 + 𝑖𝑢4𝑣2𝑇|ℱ𝑡]

= 𝐸𝑄[𝑒−𝑟(𝑇−𝑡) + 𝑖𝑢1𝑋1𝑇 + 𝑖𝑢2𝑋2𝑇 + 𝑖𝑢3𝑣1𝑇 + 𝑖𝑢4𝑣2𝑇|𝑥1𝑡 ,

  𝑥2𝑡 , 𝑣1𝑡 , 𝑣2𝑡].

  

where i is the imaginary unit, 𝑡 ∈ [0, 𝑡], 𝑢1, 𝑢2. 𝑢3 ∈ 𝒞, and 

𝐸𝑄[⋅ |ℱ𝑡]  denotes the conditional expectation under the 

probability measure Q.  

 

Theorem 1: Assuming the underlying assets follow the market 

model (1), the joint characteristic function of the two 

underlying assets has the following expression:  

 

Ψ(𝑡, 𝑥1, 𝑥2, 𝑣1, 𝑣2; 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑇)

= 𝑒𝑥𝑝( 𝑖𝑢1𝑥1 + 𝑖𝑢2𝑥2 + 𝐴(𝜏, 𝐮)

  +𝐵(𝜏, 𝐮)𝑣1 + 𝐶(𝜏, 𝐮)𝑣2)

 (2) 

Where 𝜏 = 𝑇 − 𝑡  and 𝒖 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) . The coefficient 

functions are defined as: 

 

𝐴(𝜏, 𝐮) =
𝑑3

4𝑑1
2 [(𝑓1 + ℎ1)

2𝜏 − 4ℎ1𝜏(𝑓1 + ℎ1)

 −4(𝑓1 + ℎ1) 𝑙𝑛
1−𝑞1𝑒

−ℎ1𝜏

1−𝑞1
+ 4ℎ1

2𝜏

 +4ℎ1 𝑙𝑛
1−𝑞1𝑒

−ℎ1𝜏

1−𝑞1
+

4ℎ1

1−𝑞1
−

4ℎ1

1−𝑞1𝑒
−ℎ1𝜏

]

 +
𝑓3𝜏

2𝑑1
(𝑓1 − ℎ1) −

𝑓3

𝑑1
𝑙𝑛

1−𝑞1𝑒
−ℎ1𝜏

1−𝑞1

 +
𝑑4

4𝑑2
2 [(𝑓2 + ℎ2)

2𝜏 − 4ℎ2𝜏(𝑓2 + ℎ2)

 −4(𝑓2 + ℎ2) 𝑙𝑛
1−𝑞2𝑒

−ℎ2𝜏

1−𝑞2
+ 4ℎ2

2𝜏

 +4ℎ2 𝑙𝑛
1−𝑞2𝑒

−ℎ2𝜏

1−𝑞2
+

4ℎ2

1−𝑞2
−

4ℎ2

1−𝑞2𝑒
−ℎ2𝜏

]

 +
𝑓4𝜏

2𝑑2
(𝑓2 − ℎ2) −

𝑓4

𝑑2
𝑙𝑛

1−𝑞2𝑒
−ℎ2𝜏

1−𝑞2
+ 𝑔3𝜏

  

 
𝐵(𝜏, 𝐮) =

1

2𝑑1
[𝑓1 + ℎ1 −

2ℎ1

1−𝑞1𝑒
−𝜏ℎ1

] ,

𝐶(𝜏, 𝐮) =
1

2𝑑2
[𝑓2 + ℎ2 −

2ℎ2

1−𝑞2𝑒
−𝜏ℎ2

] .
  

with parameters: 

 
𝑑1 =

1

2
𝜎1
2𝛾𝜃1

𝛾−1
, 𝑑2 =

1

2
𝜎2
2𝛾𝜃2

𝛾−1
,

𝑑3 =
1−𝛾

2
𝜎1
2𝜃1

𝛾
, 𝑑4 =

1−𝛾

2
𝜎2
2𝜃2

𝛾
,

  

 𝑓1 = −
1+𝛾

2
𝜃1

𝛾−1

2 𝜌11𝜎11𝜎1𝑖𝑢1 −
1+𝛾

2
𝜃1

𝛾−1

2 𝜌21𝜎21𝜎1𝑖𝑢2 + 𝛽1, 

 𝑓2 = −
1+𝛾

2
𝜃2

𝛾−1

2 𝜌12𝜎12𝜎2𝑖𝑢1 −
1+𝛾

2
𝜃2

𝛾−1

2 𝜌22𝜎22𝜎2𝑖𝑢2 + 𝛽2,  

 𝑓3 =
1−𝛾

2
𝜃1

1+𝛾

2 𝜌11𝜎11𝜎1𝑖𝑢1 +
1−𝛾

2
𝜃1

1+𝛾

2 𝜌21𝜎21𝜎1𝑖𝑢2 + 𝛽1𝜃1,  

 𝑓4 =
1−𝛾

2
𝜃2

1+𝛾

2 𝜌12𝜎12𝜎2𝑖𝑢1 +
1−𝛾

2
𝜃1

1+𝛾

2 𝜌22𝜎22𝜎2𝑖𝑢2 + 𝛽2𝜃2,  

 𝑔1 = (𝑖𝑢1 + 𝑖𝑢2)𝜗1 −
1

2
𝜎11
2 𝑢1

2 −
1

2
𝜎21
2 𝑢2

2 − 𝜎11𝜎21𝜌1𝑢1𝑢2,  

 𝑔2 = (𝑖𝑢1 + 𝑖𝑢2)𝜗2 −
1

2
𝜎12
2 𝑢1

2 −
1

2
𝜎22
2 𝑢2

2 − 𝜎12𝜎22𝜌2𝑢1𝑢2,  

 𝑔3 = 𝜗0(𝑖𝑢1 + 𝑖𝑢2),  

 ℎ1 = ℎ1(𝑢1, 𝑢2, 0,0) =

√𝑓1
2(𝑢1, 𝑢2, 0,0) − 4𝑑1𝑔1(𝑢1, 𝑢2, 0,0),  

 ℎ2 = ℎ2(𝑢1, 𝑢2, 0,0) =

√𝑓2
2(𝑢1, 𝑢2, 0,0) − 4𝑑2𝑔2(𝑢1, 𝑢2, 0,0),  

 𝑞1 = 𝑞1(𝑢1, 𝑢2, 𝑢3, 0) =
2𝑑1𝑖𝑢3−𝑓1(𝑢1,𝑢2,0,0)+ℎ1(𝑢1,𝑢2,0,0)

2𝑑1𝑖𝑢3−𝑓1(𝑢1,𝑢2,0,0)−ℎ1(𝑢1,𝑢2,0,0)
,  

 𝑞2 = 𝑞2(𝑢1, 𝑢2 ∣ 0, 𝑢4) =
2𝑑2𝑖𝑢4−𝑓2(𝑢1,𝑢2,0,0)+ℎ2(𝑢1,𝑢2,0,0)

2𝑑2𝑖𝑢4−𝑓2(𝑢1,𝑢2,0,0)−ℎ2(𝑢1,𝑢2,0,0)
.  

 

Proof: By applying the semi-martingale Itô formula and 

Feynman-Kac theorem, the characteristic function 𝛹satisfies 

the following parabolic partial differential equation (PDE) 

with boundary conditions: 

 

∂𝜓

∂𝑡
+ ∑ (𝑅𝑡 −

1

2
𝜎𝑝1
2 𝑣1 −

1

2
𝜎𝑝2
2 𝑣2 − 𝜆𝜅𝑝)

2
𝑝=1

∂𝜓

∂𝑥𝑝

+∑ 𝛽𝑝
2
𝑝=1 (𝜃𝑝 − 𝑣𝑝)

∂𝜓

∂𝑣𝑝
+ ∑

1

2

2
𝑝=1 (𝜎𝑝1

2 𝑣1 + 𝜎𝑝2
2 𝑣2)

∂2𝜓

∂𝑥𝑝
2

+∑
1

2

2
𝑝=1 𝜎𝑝

2𝑣𝑝
𝛾 ∂2𝜓

∂𝑣𝑝
2 + ∑ 𝜎1𝑝

2
𝑝=1 𝜎2𝑝𝑣𝑝𝜌𝑝

∂2𝜓

∂𝑥1 ∂𝑥2

+∑ ∑ 𝜌𝑝𝑗
2
𝑝=1

2
𝑗=1 𝜎𝑝𝑗𝜎𝑝𝑣𝑗

𝛾+1

2 ∂2𝜓

∂𝑥𝑝 ∂𝑣𝑗
= 0.

 (3) 

Since the PDE (3) is nonlinear in v1 and v2 we linearize the 

terms 𝑣
𝑖

𝛾+1

2  and 𝑣𝑖
𝛾

 (i=1,2) via first-order Taylor expansions 

around 𝑣𝑖 = 𝜃𝑖: 

 𝑣𝑖
𝛾
≈ (1 − 𝛾)𝜃𝑖

𝛾
+ 𝛾𝜃𝑖

𝛾−1
𝑣𝑖 (4) 

 𝑣𝑖
𝛾
≈ (1 − 𝛾)𝜃𝑖

𝛾
+ 𝛾𝜃𝑖

𝛾−1
𝑣𝑖 (5) 

Substituting (4) and (5) into (3) yields the linearized PDE: 

 

∂𝜓

∂𝑡
+ ∑ (2

𝑝=1 ϑ0 + ϑ1𝑣1 + ϑ2𝑣2 −
1

2
𝜎𝑝1
2 𝑣1 −

1

2
𝜎𝑝2
2 𝑣2

−𝜆𝜅𝑝)
∂𝜓

∂𝑥𝑝
+ ∑ 𝛽𝑝

2
𝑝=1 (𝜃𝑝 − 𝑣𝑝)

∂𝜓

∂𝑣𝑝

+∑
1

2

2
𝑝=1 (𝜎𝑝1

2 𝑣1 + 𝜎𝑝2
2 𝑣2)

∂2𝜓

∂𝑥𝑝
2 + ∑

1

2

2
𝑝=1 𝜎𝑝

2[(1 − 𝛾)𝜃𝑝
𝛾

+𝛾𝜃𝑝
𝛾−1

𝑣𝑝]
∂2𝜓

∂𝑣𝑝
2 +∑ 𝜎1𝑝

2
𝑝=1 𝜎2𝑝𝑣𝑝𝜌𝑝

∂2𝜓

∂𝑥1 ∂𝑥2

+∑ ∑ 𝜌𝑝𝑗
2
𝑝=1

2
𝑗=1 𝜎𝑝𝑗𝜎𝑝(

1−𝛾

2
𝜃
𝑗

𝛾+1

2 +
1

2
𝜃
𝑗

𝛾−1

2 𝑣𝑗)
∂2𝜓

∂𝑥𝑝 ∂𝑣𝑗
= 0.

 (6) 

According to [8] the partial differential equation (6) admits an 

exponential-form solution: 

13
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Ψ(𝑡, 𝑥1, 𝑥2, 𝑣1, 𝑣2; 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑇)

= 𝑒𝑥𝑝[𝑖𝑢1𝑥1 + 𝑖𝑢2𝑥2 + 𝐴(𝜏, 𝐮) + 𝐵(𝜏, 𝐮)𝑣1 + 𝐶(𝜏, 𝐮)𝑣2]
 (7) 

with boundary conditions: 

 {

𝐴(0, 𝐮) = 0,
𝐵(0, 𝐮) = 𝑖𝑢3,

𝐶(0, 𝐮) = 𝑖𝑢4.
 (8) 

Substituting (7) into (8) yields the following system of 

ordinary differential equations: 

 

∂𝐵

∂𝑡
+

1

2
𝜎1
2𝛾𝜃1

𝛾−1
𝐵2 − (−

1+𝛾

2
𝜃1

𝛾−1

2 𝜌11𝜎11𝜎1𝑖𝑢1

−
1+𝛾

2
𝜃1

𝛾−1

2 𝜌21𝜎21𝜎1𝑖𝑢2 + 𝛽1)𝐵 + (ϑ1 −
1

2
𝜎11
2 )𝑖𝑢1

+(ϑ2 −
1

2
𝜎21
2 )𝑖𝑢2 +

1

2
𝜎11
2 (𝑖𝑢1)

2 +
1

2
𝜎21
2 (𝑖𝑢2)

2

−𝜎11𝜎21𝜌1𝑢1𝑢2 = 0

 (9) 

 

∂𝐶

∂𝑡
+

1

2
𝜎2
2𝛾𝜃2

𝛾−1
𝐶2 − (−

1+𝛾

2
𝜃2

𝛾−1

2 𝜌12𝜎12𝜎2𝑖𝑢1

−
1+𝛾

2
𝜃2

𝛾−1

2 𝜌22𝜎22𝜎2𝑖𝑢2 + 𝛽2)𝐶 + (ϑ2 −
1

2
𝜎12
2 )𝑖𝑢1

+(ϑ2 −
1

2
𝜎22
2 )𝑖𝑢2 +

1

2
𝜎12
2 (𝑖𝑢1)

2 +
1

2
𝜎22
2 (𝑖𝑢2)

2

−𝜎12𝜎22𝜌2𝑢1𝑢2 = 0

 (10) 

 

𝜕𝐴

𝜕𝑡
+

1−𝛾

2
𝜎1
2𝜃1

𝛾
𝐵2 +

1−𝛾

2
𝜃1

1+𝛾

2 𝜌11𝜎11𝜎1𝑖𝑢1𝐵

+
1−𝛾

2
𝜃1

1+𝛾

2 𝜌21𝜎21𝜎1𝑖𝑢2𝐵 + 𝛽1𝜃1𝐵 +
1−𝛾

2
𝜎2
2𝜃2

𝛾
𝐶2

+
1−𝛾

2
𝜃2

1+𝛾

2 𝜌12𝜎12𝜎2𝑖𝑢1𝐶 +
1−𝛾

2
𝜃1

1+𝛾

2 𝜌22𝜎22𝜎2𝑖𝑢2𝐶

+𝛽2𝜃2𝐶 + 𝜗0(𝑖𝑢1 + 𝑖𝑢2) = 0

 (11) 

Using the integral identity: 

 

∫
𝑑𝑥

𝑎𝑥2−𝑏𝑥+𝑐
=

1

−√𝑏2−4𝑎𝑐
𝑙𝑛(

2𝑎𝑥−𝑏+√𝑏2−4𝑎𝑐

2𝑎𝑥−𝑏−√𝑏2−4𝑎𝑐
)  we obtain the 

solutions: 

 
𝐵(𝜏, 𝐮) =

1

2𝑑1
(𝑓1 + ℎ1 −

2ℎ1

1−𝑞1𝑒
−ℎ1𝜏

) ,

𝐶(𝜏, 𝐮) =
1

2𝑑2
(𝑓2 + ℎ2 −

2ℎ2

1−𝑞2𝑒
−ℎ2𝜏

) .
  

Integrating both sides of (11) yields: 

 

𝐴(𝜏, 𝒖) = 𝑑3 ∫ 𝐵
𝜏

0
(𝑠, 𝒖)2𝑑𝑠 + 𝑓3 ∫ 𝐵

𝜏

0
(𝑠, 𝒖)𝑑𝑠

+𝑑4 ∫ 𝐶
𝜏

0
(𝑠, 𝒖)2𝑑𝑠 + 𝑓4 ∫ 𝐶

𝜏

0
(𝑠, 𝒖)𝑑𝑠 + 𝑔3 ∫ 𝑑

𝜏

0
𝑠

=
𝑑3

4𝑑1
2 [(𝑓1 + ℎ1)

2𝜏 − 4ℎ1𝜏(𝑓1 + ℎ1)

−4(𝑓1 + ℎ1) 𝑙𝑛
1−𝑞1𝑒

−ℎ1𝜏

1−𝑞1
+ 4ℎ1

2𝜏

+4ℎ1 𝑙𝑛
1−𝑞1𝑒

−ℎ1𝜏

1−𝑞1
+

4ℎ1

1−𝑞1
−

4ℎ1

1−𝑞1𝑒
−ℎ1𝜏

]

+
𝑓3𝜏

2𝑑1
(𝑓1 − ℎ1) −

𝑓3

𝑑1
𝑙𝑛

1−𝑞1𝑒
−ℎ1𝜏

1−𝑞1

+
𝑑4

4𝑑2
2 [(𝑓2 + ℎ2)

2𝜏 − 4ℎ2𝜏(𝑓2 + ℎ2)

−4(𝑓2 + ℎ2) 𝑙𝑛
1−𝑞2𝑒

−ℎ2𝜏

1−𝑞2
+ 4ℎ2

2𝜏

+4ℎ2 𝑙𝑛
1−𝑞2𝑒

−ℎ2𝜏

1−𝑞2
+

4ℎ2

1−𝑞2
−

4ℎ2

1−𝑞2𝑒
−ℎ2𝜏

]

+
𝑓4𝜏

2𝑑2
(𝑓2 − ℎ2) −

𝑓4

𝑑2
𝑙𝑛

1−𝑞2𝑒
−ℎ2𝜏

1−𝑞2
+ 𝑔3𝜏

  

4. Digital Power Exchange Option Pricing 
 

This section derives the pricing formula for digital power 

exchange options. Let 𝐶(𝑡, 𝛼1, 𝛼2, 𝑘, 𝑘1, 𝑘2, 𝑇)  denote the 

price at time t of a European digital power exchange option 

with maturity T and exchange ratio K The terminal payoff 

function of the digital power exchange option is defined as: 

𝑉(𝛼1, 𝛼2, 𝑘, 𝑘1, 𝑘2, 𝑇) =

{
 
 
 

 
 
 
(𝑆1𝑇

𝛼1 − 𝐾𝑆2𝑇
𝛼2)+𝟏

(𝐾1≤
𝑆1𝑇
𝛼1

𝑆2𝑇
𝛼2
≤𝐾2)

0 ≤ 𝐾 ≤ 𝐾1
(𝑆1𝑇

𝛼1 − 𝐾𝑆2𝑇
𝛼2)+𝟏

(𝐾≤
𝑆1𝑇
𝛼1

𝑆2𝑇
𝛼2
≤𝐾2)

𝐾1 ≤ 𝐾 ≤ 𝐾2
0, 𝐾 ≥ 𝐾2

 (12) 

Where [K1, K2] represents the option's strike interval. Let 

𝑘𝑗 = 𝑙𝑛 𝐾𝑗. Based on the payoff structure: When 𝛼1 = 𝛼2 = 1, 

the option reduces to a digital exchange option. When 𝐾1 →
−∞, and 𝐾2 → +∞, the option becomes a power exchange 

option.  

 

Theorem 2: Under the market model (1) the time-t price of a 

European digital power exchange option with maturity T and 

payoff function (12) is given by: 

 
𝐶(𝑡, 𝛼1, 𝛼2, 𝑘, 𝑘1, 𝑘2, 𝑇) =

{
 
 

 
 
𝜓(𝑡, −𝑖𝛼1, 0,0,0, 𝑇) × 𝛱1(𝑡, 𝑘1, 𝑘2, 𝑇)

−𝐾 × 𝜓(𝑡, 0, −𝑖𝛼2, 0,0, 𝑇) × 𝛱2(𝑡, 𝑘1, 𝑘2, 𝑇), 0 ≤ 𝐾 ≤ 𝐾1
𝜓(𝑡, −𝑖𝛼1, 0,0,0, 𝑇) × 𝛱1(𝑡, 𝑘, 𝑘2, 𝑇)

−𝐾 × 𝜓(𝑡, 0, −𝑖𝛼2, 0,0, 𝑇) × 𝛱2(𝑡, 𝑘, 𝑘2, 𝑇), 𝐾1 ≤ 𝐾 ≤ 𝐾2
0, 𝐾 ≥ 𝐾2

  

where the coefficient functions satisfy the system: 

 

𝛱𝑙(𝑡, 𝑘1, 𝑘2, 𝑇) =
1

𝜋
∫ ℜ

∞

0
[
𝜙𝑙(𝑡,𝑢,𝑇)×𝑒

−𝑖𝑢𝑘1

𝑖𝑢
−

𝜙𝑙(𝑡,𝑢,𝑇)×𝑒
−𝑖𝑢𝑘2

𝑖𝑢
]𝑑𝑢,

𝜙1(𝑡, 𝑢, 𝑇) =
𝜓(𝑡,(𝑢−𝑖)𝛼1,−𝑢𝛼2,0,0,𝑇)

𝜓(𝑡,−𝑖𝛼1,0,0,0,𝑇)
,

𝜙2(𝑡, 𝑢, 𝑇) =
𝜓(𝑡,𝑢𝛼1,−(𝑖+𝑢)𝛼2,0,0,𝑇)

𝜓(𝑡,0,−𝑖𝛼2,0,0,𝑇)
.

  

Proof: Let 𝑌𝑡 = 𝛼1𝑋1𝑡 − 𝛼2𝑋2𝑡. By risk-neutral pricing, when 

0 ≤ 𝐾 ≤ 𝐾1, we have: 

 

𝐶(𝑡, 𝛼1, 𝛼2, 𝑘, 𝑘1, 𝑘2, 𝑇)

= 𝐸𝑡
𝑄[𝑒−∫ 𝑅𝑠

𝑇
𝑡 𝑑𝑠(𝑆1𝑇

𝛼1 − 𝐾𝑆2𝑇
𝛼2)+1

(𝑘1⩽
𝑆1𝑇
𝛼1

𝑆2𝑇
𝛼2
⩽𝑘2)

]

= 𝐸𝑡
𝑄 [𝑒−∫ 𝑅𝑠

𝑇
𝑡 𝑑𝑠+𝛼1𝑋1𝑇1(𝑘1≤𝑌𝑇≤𝑘2)]

 −𝐾𝐸𝑡
𝑄 [𝑒−∫ 𝑅𝑠

𝑇
𝑡 𝑑𝑠+𝛼2𝑋2𝑇1(𝑘1≤𝑌𝑇≤𝑘2)]

= 𝐼1 − 𝐾𝐼2.

 (13) 

To simplify calculations, we perform the following measure 

transformation: 

 
𝑑𝑄𝑙

𝑑𝑄
|ℱ𝑇 =

𝑒−∫ 𝑅𝑠
𝑇
𝑡 𝑑𝑠+𝛼𝑙𝑋𝑙𝑇

𝐸𝑡
𝑄
[𝑒−∫ 𝑅𝑠

𝑇
𝑡 𝑑𝑠+𝛼𝑙𝑋𝑙𝑇]

,  𝑙 = 1,2  

It is straightforward to verify that the Radon-Nikodym 

derivative for the aforementioned measure transformation 

14 
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exists, with 
𝑑𝑄𝑙

𝑑𝑄
|ℱ𝑇 = 1. By Girsanov’s theorem, the measures 

Q1 and Q2 are equivalent martingale measures under Q. 

Consequently 

 
𝐼1 = 𝐸𝑡

𝑄 [𝑒−∫ 𝑅𝑠
𝑇
𝑡 𝑑𝑠+𝛼1𝑋1𝑇] 𝑄1(𝑘1 ≤ 𝑌𝑇 ≤ 𝑘2)

= 𝜓(𝑡, −𝑖𝛼1, 0,0,0, 𝑇)𝛱1(𝑡, 𝑘1, 𝑘2, 𝑇)
 (14) 

 
𝐼2 = 𝐸𝑡

𝑄 [𝑒−∫ 𝑅𝑠
𝑇
𝑡 𝑑𝑠+𝛼2𝑋2𝑇] 𝑄2(𝑘1 ≤ 𝑌𝑇 ≤ 𝑘2)

= 𝜓(𝑡, 0, −𝑖𝛼2, 0,0, 𝑇)𝛱2(𝑡, 𝑘1, 𝑘2, 𝑇)
 (15) 

By the uniqueness theorem relating characteristic functions 

and distribution functions, along with Fourier inversion, we 

derive 

 

𝛱𝑙(𝑡, 𝑘1, 𝑘2, 𝑇)

=
1

𝜋
∫ ℜ

∞

0
[
𝜙𝑙(𝑡,𝑢,𝑇)(𝑒

−𝑖𝑢𝑘1−𝑒−𝑖𝑢𝑘2)

𝑖𝑢
] 𝑑𝑢, 𝑙 = 1,2

 (16) 

where 𝜙𝑙(𝑡, 𝑢, 𝑇) denotes the characteristic function of YT 

under the measure Q1 defined as  

 

𝜙1(𝑡, 𝑢, 𝑇) = 𝐸𝑡
𝑄1[𝑒𝑖𝑢𝑌𝑇] = 𝐸𝑡

𝑄 [
𝑒−∫ 𝑅𝑠𝑑𝑠+𝛼1𝑋1𝑇+𝑖𝑢𝑌𝑇

𝑇
𝑡

𝐸𝑡
𝑄
[𝑒−∫ 𝑅𝑠𝑑𝑠+𝛼1𝑋1𝑇

𝑇
𝑡 ]

]

=
𝐸𝑡
𝑄
[𝑒−∫ 𝑅𝑠𝑑𝑠+(𝑖𝑢+1)𝛼1𝑋1𝑇−𝑖𝑢

𝑇
𝑡 𝛼2𝑋2𝑇]

𝐸𝑡
𝑄
[𝑒−∫ 𝑅𝑠𝑑𝑠+𝛼1𝑋1𝑇

𝑇
𝑡 ]

=
Ψ(𝑡,(𝑢−𝑖)𝛼1,−𝑢𝛼2,0,0,𝑇)

Ψ(𝑡,−𝑖𝛼1,0,0,0,𝑇)
= 𝜙1(𝑡, 𝑢).

 (17) 

and 

 

𝜙2(𝑡, 𝑢, 𝑇) = 𝐸𝑡
𝑄2[𝑒𝑖𝑢𝑌𝑇] = 𝐸𝑡

𝑄 [
𝑒−∫ 𝑅𝑠𝑑𝑠+𝛼2𝑋2𝑇+𝑖𝑢𝑌𝑇

𝑇
𝑡

𝐸𝑡
𝑄
[𝑒−∫ 𝑅𝑠𝑑𝑠+𝛼2𝑋2𝑇

𝑇
𝑡 ]

]

=
𝐸𝑡
𝑄
[𝑒−∫ 𝑅𝑠𝑑𝑠+𝑖𝑢𝛼1𝑋1𝑇+(1−𝑖𝑢)

𝑇
𝑡 𝛼2𝑋2𝑇]

𝐸𝑡
𝑄
[𝑒−∫ 𝑅𝑠𝑑𝑠+𝛼2𝑋2𝑇

𝑇
𝑡 ]

=
Ψ(𝑡,𝑢𝛼1,−(𝑖+𝑢)𝛼2,0,0,𝑇)

Ψ(𝑡,0,−𝑖𝛼2,0,0,𝑇)
= 𝜙2(𝑡, 𝑢).

 (18) 

Similarly, the time-t expression of the option can be derived 

for the case 𝐾1 ≤ 𝐾 ≤ 𝐾2 . When 𝐾2 < 𝐾 , the inequality 
𝑆1𝑇
𝛼1

𝑆2𝑇
𝛼2 ≤ 𝐾2 < 𝐾 holds, rendering the option value zero. 

 

5. Conclusion 
 

This paper investigates the pricing of digital power exchange 

options under a non-affine stochastic volatility model. The 

approximate characteristic function of the log-price 

distribution of the underlying asset is first derived using the 

perturbation analysis method for partial differential equations. 

Then, by applying Fourier transform and its inverse transform, 

an analytical expression for the digital power exchange 

options is obtained. 
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