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Abstract: This paper considers a pricing problem on a kind of Exotic option: Exchange options under a mixed-exponential jump
diffusion model within the stochastic interest rate and stochastic volatility framework. By applying the Feynman-Kac theorem, the joint
characteristic function, and Fourier inverse transformation techniques, the semi-analytical pricing formula for the option is obtained.
This research provides critical theoretical foundations and empirical insights for pricing related financial derivatives and managing

associated risks.
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1. Introduction

As an exotic option, the exchange option [1] grants the holder
the right to exchange two underlying assets at the expiration
date. Its pricing mechanism is significantly more complex
than that of single-asset options due to the correlation between
the two assets. The classic Black-Scholes model [2] (BS
model) provides a theoretical foundation for option pricing,
but its core assumptions—that asset prices follow geometric
Brownian motion, implied volatility and a constant risk-free
interest rate—are inconsistent with empirical observations
such as the “sharp peaks and fat tails” distribution of asset
returns, the “volatility smile or skew” phenomenon, and the
time-varying nature of interest rates. To reduce the gap
between theory and market reality, academia has
systematically improved pricing models from three
dimensions: 1) Jump diffusion models, including the Merton
jump diffusion model [3], double-index jump diffusion model
[4], and mixed-exponential jump diffusion model [S] (MEM);
2) Stochastic volatility models, such as the Hull-White
stochastic volatility model [6], Heston stochastic volatility
model [7], and double Heston stochastic volatility model [8];
3) Stochastic interest rate models, including the Vasicek
model [9] and CIR stochastic interest rate model [10].
However, single models have limitations in capturing
multidimensional risk factors. Therefore, scholars have
combined single stochastic volatility models and stochastic
interest rate models with jump diffusion models to improve
pricing accuracy. Li et al. [11] provided a risk-neutral pricing
for exchange options under the jump diffusion model; Kim
and Park [12] derived the Margrabe formula for exchange
options under the Heston model; Cheang and Graces [13]
combined the stochastic volatility model with the jump
diffusion model to study the pricing of European and
American exchange options.

Research by scholars like Bates [14], Bakshi et al. [15] shows
that combining stochastic volatility, stochastic interest rate,
and jump diffusion models works much better than using a
single model for option pricing and fits market features more
accurately. The Merton model [3] captures the "sharp peaks
and fat tails" in asset returns well but misses the asymmetry in
asset prices. The Lévy model fits these features too [16][17],
but as Cai and Kou [5] noted, it struggles to show both long-
and short-term patterns at the same time, so they came up with

a mixed-exponential jump diffusion model. Current research
on exchange option pricing has not looked at combining the
double Heston stochastic volatility model with the
mixed-exponential jump diffusion model. Since the Vasicek
model can have negative interest rates, this paper introduces a
new mixed-exponential jump diffusion model with stochastic
interest rates and stochastic volatility, where volatility follows
a CIR model and interest rates are shown as a double
exponential. Using tools like joint characteristic functions, the
Feynman-Kac theorem, and Fourier inverse transform, we
derive the pricing formula for exchange options.

2. Model Specification

Given a complete probability space (2,F,Q), where
(F)o<t<r represents the information flow under normal
conditions. Assume that the probability measure Q is the
equivalent martingale measure. Suppose that there are only
two types of risky assets in the market: S;;, S,;, whose
corresponding values X;; =InS;; , X, =ImnS, and
long-term and short-term volatilities V;, and V,, satisfy the
following system of stochastic differential equations under the
measure Q:

dX, = (Rt - %aflVlt - %0-122V2t - lkl) dt + 031/ V1 AW,
t012 VthW;’tl + JitdNit + i dNE,
dX,, = (Rt - %0221V1t - %UZZZVN - Akz) dt + 051/Vy AW
t022 VthW;’tz + J3:dN3; + J3.dN¢,
dVie = B1(0pr — Vip)dt + Ulmdwfit’
AVye = B2(0yy — Vap)dt + JZ\/‘EdWZVt'

(1)

W, = (W3, Wyt W2, Wo2, W, WS represents a
6-dimensional standard Brownian motion, and N, =
{N$, N, N} is a 3-dimensional Poisson process with
intensity parameters (4,4,,4.) . Assume the correlation
coefficients ~ Corr(Wg, W) = p;; , Corr(W;*,W,;?) =
pi(L,j = 1,2). where p;j, p, are constants, and the remaining
Brownian motions are independent of each other. g;, 6,
o0;(i = 1,2) are non-negative constants, and satisfy 2(5;0,,; =
o?. Bi, 6,;, 0; are called the mean reversion rate, long-term
equilibrium level, and standard deviation of V;;, respectively.
R, =9y +9,Vi¢ +9,V,¢, where 9y, 9,, 9, are constants.
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Y; = J;; is a random variable following a mixed exponential

distribution, with probability density function:

Fro ) = Py T8 o1 Py iy "7 Lysoy + Qay iy=1 iy O, €7%2” Iy <oy @
sz O = Pu, ZZ;=1 pk3nk3e_nk3y[{y20} + qa, 27(14:1 QR49k4eek4y1{y<0} ,
the up-jump probability satisfies 1 = p,; = 0, the down-jump  The  simplified  models  (1)-(3)  represent  the

probability q4, =1 — py, , and the probabilities of up and
down jumps py,, G, Pksr Gk, € (—,0), with ¥ _ 1 pe, =
222=1 Ay, = ngn Pr; = ZZ4=1 i, =1 - My Okyo My O,
represent the jump magnitudes for up and down jumps,
respectively, and satisfy the following conditions:

(1) M, 21,6, =0,m, 21,0, =0,Vky, ks =1,..,m,
sz,k4 = 1,...,71

(2) Z;(nllzl Pry Mk, 2= 0, ZZ;zl qr,0k, =2 0,VYm; =1,...,m,
vn, =1,..,n

(3) ZZ;2=1 pk3nk3 =0, ZZZ=1qk49k4 =0, sz =1,..,m,

vn,=1,..,n

Assume that W, J;, N; are independent of each other, and the
joint jump amplitude distribution of the jump process is
represented by the variable v. Assume that v has a jump
transformation:

v(cy, ) = 11171(61);12172(02). 3)
Here,
A=Al+lz,K1 =v(10)_1 Kz =v(01)—1,
PkiMk Ak, Ok
v;(C) = Py, Zhy ——+ - 1 +qq, Xk, 92 o
_ Pk371k3 dky Ok
V,(€) = Du, Xy - + qa, Xk, '9:4+:-

B(t, U u,) = [E24[9%
+Xi

aj(uy) = p; —
bi(u) = $3 [ (9 -

1
A(n ) = 25| + i) -

Bibvi
221 (@) - viwye - 21
ip1101;03U1q —

1 .
;Uli) Ly —

MEJ-2Heston-CIR model (a double Heston-CIR stochastic
mixed- exponential jump diffusion model)

3. Main Results

3.1 Characteristic Function

Let ¥(t, X7, Vy,u,,u,, T) be the joint -conditional
characteristic =~ function of the random  vectors
(X1t X26, V4, Vo) under the measure Q based on the
reference family F;.

T . .
w(t:XT!VT: u,, uv,T) — EtQ[e—ft des+LuXX%+Lqu%]’ (4)

The vectors X; = (Xi6X5t) » Vo= Ve Var) , Uy =
(Ug1,U12) 5 Uy = (Uzp, Uzp), X = (X4, X2), ¥ = (v1,1;). X7,
Vi represent the rotations of X, V respectively, with u; i €
(C(l,] = 1,2) DenOte (4) as ll}(t, ull, ulz, u21, u22, T).

Theorem 1. Suppose S;; and S, satisfy the
MEJ-2Heston-CIR model, then the characteristic function
WY(t, uyq, Ugz, Upp, Upy, T) has  the following analytical
expression:

Y, X, Vi, uy,u,, T) = exp(iug1xq + iugyx, +
fo1 Ai(T U w)v; + B(1,uy, 1)),
Heret =T — t,
2yi(ux) ]

1_gi(ux:uv)><e_yi(ux)‘c !

— Areliug + Yoy Ay (fug) + w(iugg, ing) — 4 = 9l

1—9i(ux:uv)xe_yi(wc)r]
1-g;(uxuy) ’
1P2102i0;{U12,

1 2. 2
PRt ] — Ui — pi01j02 Uy Uz,

gi(uy,uy) =

Proof: From the I[t6 formula, we can obtain:

+X5 1( oh +> Uzz)

+ Y2, p01,0 SR
=1 P10V 5 =~

From the references [18], it is known that
W(t, uqq, Ugz, Upp, Uy, T) has a reflective structure, Then,
according to the above equation, we can get

a8
{ D= Y9, -
B(0,u,,u,) = 0.

1,0
Py Y (o + 191171 +0,v, — 5011
+ Y,

a2
12=1 Y1 L1010V —axlavi = (o + 91V + F,v,) ¢

Akl]lull + Z 1.81917114 (T)

yi(uy) = \/ai(ux)z — 207 b;(u,),
i”izuzi_ai(ux)"'yi(ux)
i”izuzi_ai(ux)_yi(ux) '

1
- ‘Uzz /1'Cz) 6xl

zall)

ﬁi(gvi - )_+_ lav_z

2 i

FME[D(E x1 + JTp X2, 0, U, uy,, T) — P8, X, 0, Uy, wy, T)]

HLE[Y(E x1, 2% + 30,0, U, wy, T) — P (L, X, 0, Uy, uy,, T)]
+AE[W(t, x1 + Jie Xp + 560, Uy, wy, T) — (L, X, 0, Uy, u,, T)] = 0,

w(T’ X7, Vy, Uy, T) = elU11XaT iU Xor+HiUug  VaT+itlaaVar,
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04i(@) _ 262A%(T) — A b -0
{ i () - WA +bia) =0, (o
Ai(O, u,, uv) = luzi.
Vo + Xioy 4wy (iug) + W (iugg, iugy) — A, )
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Ai(tr Uy, Uy, T) = Ai(Tt Uy, uv) = Ai(T) > B(t' Uy, Uy, T) =
B(t,uy,u,) = B(t). By integrating both sides of equation
(6), we get

2yi(ux) ]
1-gj(uxy)xe Vi)

®)

Integrating both sides of (8) over the interval [0, t] yields, we
get

T
J- A;(s)ds =
0
1_gi(u)muv)xe_yi(uX)T

1
| (@it — yitaw))r - otz

By substituting (9) into (7), we can obtain B(7).

[z

1
AT ) = 2 ;) +7i(u,) —

: )

3.2 Exchange Option Pricing

According to the definition of exchange options, the value of
this option at maturity date T is

Cp(T, 816,826, T) = (Sir — SZT)+- (10

Thus, the value of the exchange option under the risk-neutral
measure Q at time t € [0,T] is
CD (t' Slt' SZt' T)

T T
=E [e ki RSdSSlTI(smszr)] -E [e I RSdSSZTI(51T>52T)]
= 51001 Xar > Xor) — $20Q2(Xar > Xor),
(11
Q1, Q, are two probability measures,
ﬂ”:‘ — e-ftTdeSSE
ag "t Sit’
It can be easily calculated that
E [e—ftTRSdS Sﬂ] =1,
Sit
It can be calculated using the inverse Fourier transform

formula as follows:
Qi(InS;r 2 InSyr) = Hi(lnofn ,InSy¢)
LT w (o),
2 m), iu

where R(z) represents the real part of z € C. Since there is a
unique relationship between the distribution function and the
characteristic function, the corresponding characteristic
function can be obtained.

P(u) = , Pa(u) = Y(t,0,-i,0,0T)

Theorem 2. Suppose S;; and S, follow the
MEJ-2Heston-CIR model. The price of the exchange option
with maturity T at time t € [0,T] is

Co(t, 816,826, T) = S1e M1 (In Sy, InS3) —
S2ell(In Sy, In S3¢).

YP(t,u—i,—u,0,0,T)
Y(t,—i,0,0,0,T)

Y(tu,—u—i,0,0,T)

(12)
4. Conclusion

This paper studies the pricing problem of exchange options
under the 2Heston-CIR mixed exponential jump diffusion
model. By using the /t6 formula, Feynman-Kac theorem, and
Fourier transform methods, the pricing formula for exchange
option is derived. The research results in this paper can be
extended to the pricing of American options or other exotic
options.
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