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Abstract: This paper investigates the pricing of basket credit default swaps (CDS) under stochastic interest rates using a reduced-form 

model. We assume the default intensity of reference entities and stochastic interest rates both follow Vasicek processes, with risk-free 

counterparties. Through PDE and ODE methods, we derive approximate closed-form solutions for the joint survival probability density 

and the probability density of first-default events among reference entities.  
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1. Introduction 
 

Amidst market volatility and global uncertainties, there has 

been growing attention on the default risks of major 

corporations. This has led to increased investor interest in 

credit derivatives, with credit default swaps (CDS) being 

particularly prominent. 

 

CDS contracts are of two types: single - name CDS and basket 

CDS. With globalization accelerating and corporate 

collaborations intensifying, basket CDS pricing has become a 

research focus. Current pricing methodologies mainly 

include: 

 

The structural model pioneered by Black, Scholes, and the 

reduced-form model proposed by Jarrow and Turnbull 

Structural models often struggle to obtain explicit solutions 

for diffusion risk problems, where as reduced-form models 

demonstrate superior efficacy in such contexts. In 

reduced-form frameworks, default times are modeled as jump 

processes of Poisson processes, as demonstrated by Jarro [1]. 

Lando[2] extended Jarrow’s model by employing affine 

structures to derive closed-form solutions. 

 

Contemporary research favors reduced-form models to avoid 

data collection complexities. Malherbe [3]represented default 

intensity via Poisson processes, while Herbertsson and 

Rootzén [4] developed a novel model addressing 

multi-credit-risk CDS pricing. Recent advances include: T. 

Wang and J. Liang[5]extending CDS pricing to fractional 

Brownian motion environments. Yu Chen and Yu Xing [6] 

deriving approximate solutions under CEV processes and 

extending to Vasicek processes Qi Han and Meng Wang [7] 

establishing CDS pricing formulas using contagion models 

based on basket CDS properties Yu Xing, Wei Wang, and 

Xiaonan Su [8]modeling single-name CDS pricing with 

Hawkes processes while considering counterparty risks. 

 

This study innovatively incorporates stochastic interest rates 

into basket CDS pricing under a reduced-form Vasicek 

process framework. This is a critical consideration amid 

interest rate fluctuations during global market realignments. 

 

The paper is organized as follows: 

 

Section 1 introduces CDS background and model selection 

rationale. 

 

Section 2 establishes the model framework with Vasicek - 

process assumptions. 

 

Section 3 derives probability densities via PDE methods. 

 

Section 4 develops pricing formulas under no-arbitrage 

principles. 

 

Section 5 presents conclusions and future research directions. 

 

2. Model Assumptions 
 

This section establishes the fundamental hypotheses of our 

model. Traditional credit default swap (CDS) pricing 

typically considers only single-reference assets under 

constant interest rate assumptions. However, most 

contemporary contracts involve basket CDS pricing, and 

evolving global dynamics—via economic and policy 

changes—continuously influence interest rates. We therefore 

propose a basket CDS pricing model incorporating stochastic 

interest rates. 

 

Assumption 1. When no defaults occur among the reference 

entities in the basket, the protection buyer 𝐹𝐴 is required to 

pay premiums to the counterparty 𝐹𝐶. Consider a finite time 

horizon 𝑇 > 0  and a given probability space (𝛺, ℱ, ℙ) , 

where: 

 

⚫ ℙ represents the risk-neutral probability measure; 

⚫ {ℱ𝑡}0≤𝑡≤𝑇 denotes the canonical filtration generated by 

the underlying stochastic structure; 

⚫ ℙ𝑡 indicates the probability measure restricted to ℱ𝑡; 
⚫ the conditional expectation operator is denoted by 𝔼𝑡[⋅]. 
 

Let 𝜏 be a stopping time with respect to the filtration {ℱ𝑡}, 
satisfying 𝜏 ≤ 𝑇 . For any sufficiently small Δ𝑡 ≥ 0 , 

according to the reduced-form model, if the intensity process 

𝜆(𝑡) exists, then the following holds: 

 ℙ( 𝑡 < 𝜏 ≤ 𝑡 + Δ𝑡 ∣ 𝜏 > 𝑡 ) = 𝜆(𝑡)Δ𝑡 + 𝑜(Δ𝑡). (1) 

The reference asset consists of a basket of components issued 

by distinct market entities, denoted as {𝐹𝐵𝑖 ,  𝑖 = 1, … , 𝑛} , 

entity’s default intensity is modeled by {𝜆𝑖(𝑡),  𝑖 = 1, … , 𝑛}. 
Default under the assumption of risk-free counterparty. Both 

DOI: 10.53469/jgebf.2025.07(05).05

29



 

Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595Journal of Global Economy, Business and Finance (JGEBF)     ISSN: 2141-5595

http://www.bryanhousepub.orgwww.bryanhousepub.com

  
  
   

 

                                            Volume 7 Issue 4 2025Volume 7 Issue 5 2025 

   

   

                   
                   
                     
             

        

  

 
 

  
 

 

the default intensities {𝜆𝑖(𝑡),  𝑖 = 1, … , 𝑛} and the stochastic 

interest rate 𝑟(𝑡)  follows Vasicek processes, where the 

interest rate process 𝑟 = {𝑟(𝑡), 𝑡 ≥ 0} is specified by: 

 𝑑𝜆𝑖 = 𝑏𝑖(𝑐𝑖 − 𝜆𝑖(𝑡))𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖(𝑡), (2) 

 𝑑𝑟(𝑡) = 𝑏(𝑐 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑑𝑊(𝑡). (3) 

Here, 𝑏𝑖 , 𝑐𝑖 , 𝜎𝑖 and𝑏 , 𝑐 , 𝜎  are all non-negative parameters, 

where: 𝑐𝑖  and 𝑐 𝑟epresent the long-term mean levels of 𝜆𝑖(𝑡) 
and 𝑟(𝑡)  respectively, 𝑏𝑖  and 𝑏  denote the mean-reversion 

rates to these long-term levels, 𝑊𝑖(𝑡) ,𝑊(𝑡)  are standard 

Brownian motions with the following correlation structure: 

For𝑖 ≠ 𝑗,𝑑𝑊𝑖(𝑡)𝑑𝑊𝑗(𝑡) = 0; for𝑖 = 𝑗, 𝑑𝑊𝑖(𝑡)𝑑𝑊𝑗(𝑡) = 1 . 

 

3. Default Probability Density 
 

In this section, we derive the joint survival probability density 

and the first-to-default probability density for the reference 

assets. These serve as the foundation for the pricing 

framework in Section 4. 

 

Theorem 1 (Joint Survival Probability Density). Under the 

condition that none of the constituent firms default, we obtain 

the following partial differential equation (PDE): 

 

{
 
 

 
 
∂𝑝

∂𝑡
+∑ 𝑏𝑖

𝑛
𝑖=1 (𝑐𝑖 − 𝜆𝑖)

∂𝑝

∂𝜆𝑖
+

1

2
∑ 𝜎𝑖

2𝑛
𝑖=𝑗

∂2𝑝

∂𝜆𝑗 ∂𝜆𝑖
+

𝑏(𝑐 − 𝑟)
∂𝑝

∂𝑟
−∑ (𝑛

𝑖=1 𝜆𝑖 + 𝑟)�̂� = 0,

𝑝(𝑠, 𝜆; 𝑠) = 1.

 (4) 

Proof. Under the survival condition that none of the 

constituent firms default within the time interval 𝑠(𝑡 ≤ 𝑠 ≤
𝑇), we obtain the survival probability as follows: 

 𝑃𝑇{𝜏1 > 𝑠,… , 𝜏𝑛 > 𝑠} = exp{−∫ ∑ 𝜆𝑖
𝑛
𝑖=1

𝑠

𝑡
(𝑢)d𝑢}. (5) 

Moreover, since ℱ𝑡 ⊂ ℱ𝑇 ,by the tower property of 

conditional expectations, we have: 𝐸𝑡(1{Event}) =

𝐸𝑡(𝐸𝑇(1{Event})) . Consequently, the resulting probability 

density is given by: 

 

�̂�(𝑡, 𝜆, 𝑟; 𝑠) = 𝑝𝑡{𝜏1 > 𝑠,… , 𝜏𝑛 > 𝑠}

= 𝐸[exp{−∫ ∑ 𝜆𝑖
𝑛
𝑖=1

𝑠

𝑡
(𝑢)d𝑢}|ℱ𝑡]

= 𝐸𝑡[exp{−∫ ∑ 𝜆𝑖
𝑛
𝑖=1

𝑠

𝑡
(𝑢)d𝑢}].

 (6) 

Applying the Feynman-Kac formula, we derive the PDE 

given in (4).  

 

Theorem 2 (Semi-Analytical Formula for Joint Survival 

Probability Density). For the partial differential equation 

(PDE) (4), we obtain its semi-analytical solution through the 

following expression: 

 �̂�(𝑡, 𝜆; 𝑠) = exp{𝐴(𝑡, 𝑠) − ∑ 𝐵𝑖
𝑛
𝑖=1 (𝑡, 𝑠)𝜆𝑖(𝑡) − 𝐶(𝑡, 𝑠)r(t)}.
 (7) 

This formulation satisfies: 

 

𝐵𝑖(𝑡,𝑠) =
1

𝑏𝑖
(1 − 𝑒−𝑏𝑖(𝑠−𝑡))

𝐶(𝑡,𝑠) =
1

𝑏
(1 − 𝑒−𝑏(𝑠−𝑡))

𝐴(𝑡, 𝑠) = ∫ [
𝑠

𝑡

1

2
∑ 𝜎𝑖

2𝑛
𝑖=𝑗

∂2𝑝

∂𝜆𝑗 ∂𝜆𝑖
−∑ 𝑏𝑖

𝑛
𝑖=1 𝑐𝑖𝐵𝑖(𝑢, 𝑠)

−∑ 𝑏𝑛
𝑖=1 𝑐𝐶(𝑢, 𝑠)]𝑑𝑢.

 (8) 

Proof. Following Øksendal’s[9] approach, the solution for 

�̂�(𝑡, 𝜆, 𝑠)  admits the following form. By substituting the 

preceding equations into PDE (4), we derive three distinct 

ordinary differential equations (ODEs): 

 �̂�(𝑡, 𝜆; 𝑠) = exp{𝐴(𝑡, 𝑠) − ∑ 𝐵𝑖
𝑛
𝑖=1 (𝑡, 𝑠)𝜆𝑖(𝑡) − 𝐶(𝑡, 𝑠)𝑟(𝑡)},
 (9) 

 

{
 
 
 
 

 
 
 
 

∂𝐴(𝑡,𝑠)

∂𝑡
+

1

2
∑ 𝜎𝑖

2𝑛
𝑖=𝑗

∂2𝑝

∂𝜆𝑗 ∂𝜆𝑖

−∑ 𝑏𝑖
𝑛
𝑖=1 𝑐𝑖𝐵𝑖(𝑡, 𝑠) − 𝑏𝑐𝐶(𝑡, 𝑠) = 0,

𝐴(𝑠, 𝑠) = 0,
∂𝐵𝑖(𝑡,𝑠)

∂𝑡
− 𝑏𝑖𝐵𝑖(𝑡, 𝑠) + 1 = 0,

𝐵𝑖(𝑡, 𝑠) = 0,
∂𝐶(𝑡,𝑠)

∂𝑡
− 𝑏𝐶(𝑡, 𝑠) + 1 = 0,

𝐶𝑖(𝑡, 𝑠) = 0.

 (10) 

First, solve for 𝐵𝑖(𝑡, 𝑠). Because 

 
∂𝐵𝑖(𝑡,𝑠)

∂𝑡
− 𝑏𝑖𝐵𝑖(𝑡, 𝑠) = −1, (11) 

this is a first-order linear ordinary differential equation, for 

which we can determine its integrating factor as 𝜇(𝑡) =

𝑒−∫ 𝑏𝑖
𝑡
0 𝑑𝑡 = 𝑒−𝑏𝑖𝑡, by substituting the integrating factor into 

Equation (11), we obtain 𝐵𝑖(𝑡,𝑠). Similarly, we solve for 𝐶(𝑡,𝑠), 

and then proceed to solve the previous ODEs (9) to determine 

𝐴(𝑡, 𝑠). 
 

Theorem 3. Suppose the contract terminates when the first of 

n reference firms defaults, with the seller compensating the 

buyer. Let 𝑠 denote this default time s. We define �̂�𝑖(𝑡, 𝜆; 𝑠) as 

the probability density of the first firm’s default at time 𝑠: 

 

{
 
 

 
 
∂𝑝

∂𝑡
+

1

2
∑ 𝜎𝑖

2𝑛
𝑖=𝑗

∂2𝑝

∂𝜆𝑗 ∂𝜆𝑖
+ ∑ 𝑏𝑖

𝑛
𝑖=1 (𝑐𝑖 − 𝜆𝑖)

∂𝑝

∂𝜆𝑖

+𝑏(𝑐 − 𝑟)
∂𝑝

∂𝑟
− (∑ 𝜆𝑖

𝑛
𝑖=1 + 𝑟)�̂� = 0.

𝑝𝑖(𝑠, 𝜆, 𝑠) = 𝜆𝑖 .

 (12) 

Proof. By the tower property (or iterated expectation law) of 

conditional expectations, we have: 𝐸𝑡(1{Event}) =

𝐸𝑡(𝐸𝑇(1{Event})) . The probability density of the first firm 

defaulting at time 𝑠(𝑡 ≤ 𝑠 < 𝜏𝑖 ≤ 𝑠 + 𝑑𝑠 ≤ 𝑇) is given by: 

 

�̂�𝑖(𝑡, 𝜆; 𝑠) = 𝑝𝑡{𝜏1 > 𝑠,… , 𝜏𝑛 > 𝑠, 𝜏𝑖 ≤ 𝑠 + d𝑠}

= 𝑝𝑡{𝜏1 > 𝑠,… , 𝜏𝑛 > 𝑠}𝜆𝑖(𝑠)d𝑠

= 𝐸[exp{− ∫ ∑ 𝜆𝑖
𝑛
𝑖=1

𝑠

𝑡
(𝑢)d𝑢}𝜆𝑖(𝑠) | ℱ𝑡]

= 𝐸𝑡[exp{− ∫ ∑ 𝜆𝑖
𝑛
𝑖=1

𝑠

𝑡
(𝑢)d𝑢}𝜆𝑖(𝑠)].

 (13) 

By applying the Feynman-Kac formula, we derive the partial 

differential equation (PDE) (12). 

 

Theorem 4. Under the assumption that the first company 

defaults at time 𝜏𝑖(𝑠 ≤ 𝜏𝑖 ≤ 𝑠 + 𝑑𝑠),the closed-form solution 

for �̂�𝑖(𝑡, 𝜆; 𝑠), representing the probability density of default 

at time s, is given by: 

 �̂�𝑖(𝑡, 𝜆, 𝑠) = (𝐷𝑖(𝑡, 𝑠)𝜆𝑖(t) + 𝐸(𝑡, 𝑠)𝑟(𝑡) +

𝐻(𝑡, 𝑠)) 𝑒𝑥𝑝{𝐴(𝑡, 𝑠) − ∑ 𝐵𝑖
𝑛
𝑖=1 (𝑡, 𝑠)𝜆𝑖(𝑡) − 𝐶(𝑡, 𝑠)𝑟(𝑡)}.

 (14) 

At this point, 

 𝐷𝑖(𝑡, 𝑠) = 𝑒−𝑏𝑖(𝑠 − 𝑡),  

30 
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 𝐸𝑖(𝑡, 𝑠) = 0,  

 𝐻(𝑡, 𝑠) = ∫ [−∑ 𝑏𝑖
𝑛
𝑖=1 𝐶𝑖𝐵𝑖(𝑢, 𝑠)𝐷𝑖(𝑢, 𝑠) +

𝑠

𝑡
1

2
∑ 𝜎𝑖

2𝑛
𝑖=1 𝐵𝑖

2(𝑢, 𝑠)𝐷𝑖(𝑢, 𝑠)] 𝑑𝑢. (15) 

Proof. According to Øksendal, the probability density 

function 𝑝𝑖(𝑡, 𝜆, 𝑟; 𝑠)admits the following analytical form: 

 �̂�𝑖(𝑡, 𝜆, 𝑟; 𝑠) = (𝐷𝑖(𝑡, 𝑠)𝜆𝑖 + 𝐸(𝑡, 𝑠)𝑟(𝑡) +

𝐻(𝑡, 𝑠)) 𝑒𝑥𝑝{𝐴(𝑡; 𝑠) − ∑ 𝐵𝑖
𝑛
𝑖=1 (𝑡, 𝑠)𝜆𝑖(𝑡) − 𝐶(𝑡, 𝑠)𝑟(𝑡)}.

 (16) 

Substituting this expression into PDE (12) yields: 

 

∂𝐷𝑖(𝑡,𝑠)

∂𝑡
𝜆𝑖 +

∂𝐸(𝑡,𝑠)

∂𝑡
𝑟 +

∂𝐻(𝑡,𝑠)

∂𝑡

+(𝐷𝑖(𝑡, 𝑠)𝜆𝑖 + 𝐸(𝑡, 𝑠)𝑟 + 𝐻(𝑡, 𝑠))

× {
∂𝐴(𝑡,𝑠)

∂𝑡
−∑

∂𝐵𝑖(𝑡,𝑠)

∂𝑡

𝑛
𝑖=1 𝜆𝑖 −

∂𝐶(𝑠,𝑡)

∂𝑡
𝑟

−∑ 𝑏𝑖
𝑛
𝑖=1 (𝑐𝑖 − 𝜆𝑖)𝐵𝑖(𝑡, 𝑠) −  𝑏(𝑐 − 𝑟)𝐶(𝑡, 𝑠)

+
1

2
∑ 𝐵𝑖

2𝑛
𝑖=1 (𝑡, 𝑠)𝜎𝑖

2𝜆𝑖 −∑ 𝜆𝑖
𝑛
𝑖=1 + 𝑟 − 1}

−𝑏𝑖(𝑐𝑖 − 𝜆𝑖)𝐷𝑖(𝑡, 𝑠) − 𝑏(𝑐 − 𝑟)𝐸(𝑡, 𝑠)

−𝐵𝑖(𝑡, 𝑠)𝐷𝑖(𝑡, 𝑠)𝜎𝑖
2𝜆𝑖

= 0.

 (17) 

From the above equation(s), we can derive the following three 

ordinary differential equations (ODEs): 

 

{
 
 

 
 
∂𝐷𝑖(𝑡,𝑠)

∂𝑡
− 𝑏𝑖𝐷𝑖(𝑡, 𝑠) − 1 = 0, 𝐷𝑖(𝑠, 𝑠) = 0

∂𝐸(𝑡,𝑠)

∂𝑡
− 𝑏𝐸(𝑡, 𝑠) = 0, 𝐸(𝑠, 𝑠) = 0

∂𝐻(𝑡,𝑠)

∂𝑡
−∑ 𝑏𝑛

𝑖=1 𝑖𝑐𝑖𝐵𝑖(𝑡, 𝑠)𝐷𝑖(𝑡, 𝑠) +
1

2
∑ 𝜎𝑖

2𝑛
𝑖=1 𝐵𝑖

2(𝑡, 𝑠)𝐷𝑖(𝑡, 𝑠) = 0,

𝐻(𝑠, 𝑠) = 0

 (18) 

Solving the above equations yields equation (15).  

 

4. CDS Pricing 
 

In this section, we discuss the pricing of basket CDS under 

stochastic interest rates. Consider company𝐹𝐴 , holding 𝑛 

bonds issued by companies {𝐹𝐵𝑖 ,  𝑖 = 1, … , 𝑛}. At initial time 

𝑇, to hedge against default risks from these reference entities, 

𝐹𝐴 enters into a CDS contract with counterparty 𝐹𝐶 , with 

maturity 𝑇 . During [0, 𝑇] , 𝐹𝐴  must continuously pay 

premiums to 𝐹𝐶 s long as none of the 𝑛 reference entities 

defaults. If any default occurs before T, 𝐹𝐶 must compensate 

𝐹𝐴 . For simplicity, we assume 𝐹𝐶 is default-free. As the 

contract takes effect, the following two scenarios may occur: 

 

Scenario 1: None of the reference entities defaults prior to 

maturity T. 

 

Scenario 2: A default occurs at time 𝜏𝑖(𝑠 ≤ 𝜏𝑖 ≤ 𝑠 + 𝑑𝑠) , 

triggering contract termination. Let 𝑊 denote the premium 

payments 𝑊 from 𝐹𝐴 to 𝐹𝐶.  

 

For Scenario 1: According to Theorem 3.2, the premiums 

received by 𝐹𝐶 are given by: 

 𝑊∫ 𝑒−∫ 𝑟
𝑠
𝑡
(𝑢)𝑑𝑢𝑇

𝑡
�̂�(𝑡, 𝜆, 𝑠)𝑑𝑠. (19) 

Since none of the companies default by time T, 𝐹𝐴 is obligated 

to continue making premium payments 𝑊 to 𝐹𝐶  throughout 

the entire contract period [0, 𝑇].  
 

Scenario 2: According to Formula (4), the premiums received 

by 𝐹𝐶 are given by: 

 𝑊∫ 𝑒−∫ 𝑟
𝑠
𝑡
(𝑢)𝑑𝑢𝑇

𝑡
�̂�𝑖(𝑡, 𝜆, 𝑠)𝑑𝑠. (20) 

At this point, 𝐹𝐶 must provide compensation to 𝐹𝐴, assuming 

a recovery rate of 𝑅 and a total bond face value of 𝐿, the 

compensation payment is calculated as: 

 𝐿(1 − 𝑅) ∫ 𝑒−∫ 𝑟
𝑠
𝑡

(𝑢)𝑑𝑢𝑇

𝑡
�̂�𝑖(𝑡, 𝜆, 𝑠)𝑑𝑠. (21) 

By the no-arbitrage principle, the CDS contract value at 

initiation is zero. Therefore, the present value of the total 

premiums received by 𝐹𝐶 must equal the present value of the 

compensation payments made by 𝐹𝐶 . This leads to the 

following equation: 

 

𝑊∫ 𝑒−∫ 𝑟
𝑠
𝑡
(𝑢)𝑑𝑢𝑇

𝑡
�̂�(𝑡, 𝜆, 𝑠)𝑑𝑠

+𝑊 ∫ 𝑒−∫ 𝑟
𝑠
𝑡

(𝑢)𝑑𝑢𝑇

𝑡
�̂�𝑖(𝑡, 𝜆, 𝑠)𝑑𝑠

= 𝐿(1 − 𝑅) ∫ 𝑒−∫ 𝑟
𝑠
𝑡
(𝑢)𝑑𝑢𝑇

𝑡
�̂�𝑖(𝑡, 𝜆, 𝑠)𝑑𝑠.

 (22) 

Therefore, the premium payments made by 𝐹𝐴 to 𝐹𝐶 are given 

by 

 𝑊 =
𝐿(1−𝑅) ∫ 𝑒−∫ 𝑟

𝑠
𝑡 (𝑢)d𝑢𝑝𝑖(𝑡,𝜆,𝑠)d𝑠

𝑇
𝑡

∑ ∫ 𝑒−∫ 𝑟
𝑠
𝑡 (𝑢)d𝑢𝑇

𝑡
𝑛
𝑖=1 𝑝𝑖(𝑡,𝜆,𝑠)d𝑠+∫ 𝑒−∫ 𝑟

𝑠
𝑡 (𝑢)d𝑠𝑇

𝑡 𝑝(𝑡,𝜆,𝑠)d𝑠
. (23) 

5. Conclusion 
 

This paper investigates the pricing of basket credit default 

swaps (CDS) under stochastic interest rates. Using a partial 

differential equation (PDE) approach, we derive an 

approximate pricing formula. Our model assumes interest 

rates follow the Vasicek process, reflecting volatility from 

global economic conditions and policy impacts. 

 

However, to better capture real-world default event clustering, 

future research could incorporate the Hawkes process for 

modeling stochastic interest rates. While this would yield 

more realistic results, it introduces significant computational 

challenges. Developing a pricing framework for basket CDS 

under Hawkes-process-driven stochastic interest rates is a 

promising future direction. 
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