Zagreb Polynomials, Co-Polynomials of Bipartite and Strongly Bipartite Graphs

Authors

  • Chandra Prakash Singh Ex. Head, Department of Physics, Sunderrao Solanke, Mahavidyalaya Majalgaon Dist. Beed (M.S.) India

DOI:

https://doi.org/10.53469/jerp.2024.06(10).29

Keywords:

Cycle graph, double graph, path graph, strong double graph, Zagreb co-polynomial, Zagreb index, Zagreb polynomial

Abstract

First Zagreb polynomial of a graph G with vertex set V(G) and edge set E(G) is defined as M1(G,x) =∑uv∈E(G)xdu+dv and the first Zagreb index can be obtained from it as M1(G) = M1(G,x)|x=1. In this paper Zagreb polynomials, co-polynomials and corresponding Zagreb indices, co-indices are obtained for path, cycle, double and strong double graphs.

References

M. R. R. Kanna, S. Roopa and L. Parashivamurthy, Topological indices of Vitamin D3, International Journal of Engineering and Technology, 7(4) (2018) 6276-6284.

V. R. Kulli, On Banhatti-Sombor indices, SSRG International Journal of Applied Chemistry, 8(1) (2001) 21-25.

M. Imran, S. Akhter, Degree based topological indices of double graphs and strong double graphs, Discrete Mathematics and Applications, 9(5) (2017) 1750066-15.

E. Munarini, C. Perelli, A. Scaliola and N. Z. Salvi, Double graphs, Discrete Mathematics, 302(2002) 242- 254.

V. M. Diudea, J. Chem. Inf. Comput. Sci., 37(1997) 292-299.

M. Togan, A. Yurttas, A. S. Cervic and N. Congul, Zagreb indices and multiplicative Zagreb indices of double graphs of subdivision graphs, TWMS Journal of Applied Engineering Mathematics, 9(2) (2019) 404- 412.

M. Rafiullah, H. Muhammad, A. Siddiqui, M. K. Siddiqui and M. Dhlamini, On degree-based topological indices for strong double graphs, Hindawi, Journal of Chemistry, Volume 2021, Article Id- 4852459, 12 pages.

M. S. Sardar, M. A. Ali, F. Asfraf and M. Cancan, On topological indices of double and strong double graphs of silicon carbide Si2C3-I[p, q], Eurosian Chem. Commun. , 5(2023) 37-49.

K. Kiruthika, Zagreb indices and Zagreb co-indices of some graph operations, International Journal of Advanced Research in Engineering and Technology, 7(3) (2016) 25-41.

I. Gutmn, B. Furtula, Z. K. Vukicevic and G. Popivoda, On Zagreb indices and co-indices, MATCH Mathematical and Computer Chemistry, 74(2015) 5-16.

P. Sarkar, A. Pal, General fifth M-polynomials of benzene ring implanted in the P-type surface in 2D network, Biointerface Research in Applied Chemistry, 10(6) (2020) 6881-6892.

L. Yan, W. Gao, Eccentric related indices of an infinite class of nanostar dendrimers (II), Journal of Chemical and Pharmaceutical Research, 8(5) (2016) 359-362.

N. K. Raut, The Zagreb group indices and polynomials, International Journal of Modern Engineering Research, 6(10) (2016) 84-87.

M. R. Farahani, Zagreb indices and Zagreb polynomials of polycyclic aromatic hydrocarbons, Journal of Chemical Acta, 2(2013) 70-72.

K. Mirajkar, S. Konnur, Distance-based topological indices of double graphs and strong double graphs, Ratio Mathematics, Volume 48, 2023, 1-20.

T. A. Chisti, H. A. Ganie and S. Pirzada, Properties of strong double graphs, Journal of Discrete Mathematical Science and Cryptography, 4(17) (2014) 311-319.

A. U. Rehaman, W, Khalid, Zagreb polynomials and redefined Zagreb indices of line graph of HAC5C6C7[p, q] nanotube, Open Journal of Chemistry, 1(1) (2018) 26-35.

B. Basavanagoud, P. Jakkannavar, On the Zagreb polynomials of transformation graphs, International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(6) (2018) 328-335.

M. R. Farahani, Zagreb indices and Zagreb polynomials of polycyclic aromatic hydrocarbons PAHs, Journal of Chemical Acta, 2(2013) 70-72.

Narsing Deo, Graph Theory, Prentice-Hall of India, New Delhi (2007).

N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.

R. Todeschini, and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH:Weinheim, 2000.

Downloads

Published

2024-10-30

How to Cite

Singh, C. P. (2024). Zagreb Polynomials, Co-Polynomials of Bipartite and Strongly Bipartite Graphs. Journal of Educational Research and Policies, 6(10), 124–128. https://doi.org/10.53469/jerp.2024.06(10).29