Topological Polynomials and Indices of Line Graphs of Wheel Graphs

Authors

  • Vladislav Ryabov Ex. Head, Department of Physics, Sunderrao Solanke Mahavidyalaya Majalgaon Dist.Beed (M.S.) India

DOI:

https://doi.org/10.53469/jerp.2025.07(02).03

Keywords:

Hyper-index, hyper-polynomial, leap degree, line graph of wheel graph, M-polynomial, NM-polynomial, Revan degree, reverse degree, Zagreb index

Abstract

First Zagreb polynomial of a graph G with vertex set V(G) and edge set E(G) is defined as and the first Zagreb index can be obtained from its polynomial as . In this paper some topological polynomials and their indices are obtained for line graph of wheel graph.

References

S. Prabhu, M. Arulperumjothi, G. Murugan, V. M. Dinesh and J. Praveen Kumar, On certain counting polynomial of titanium nanotubes, Nanoscience and Nanotechnology-Asia, 8(2018)01-04.

S. Lal, A. K. Sharma and V. K. Bhat, On k-distance degree-based topological indices of benzenoid systems, arXiv:2212. 042000v1[math. CO] 8 December 2022.

A. Ghalavand, S. Klavzar, M. Tavakoli, M. K. Nezhaad and F. Rabharnia, Leap eccentric index in graphs with universal vertices, Applied Mathematics and Computation, Volume 436, 1January 2023,

A. M. Nazi, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. , 2(2)(2017)99-107.

J. R. Tousi, M. Ghods and F. Movahedi, Investigating neighborhood Gourva indices using neighborhood M- polynomial in some drug structures, Communications in Combinatorics, Cryptography and Computer Science, 2(2022)154-166.

A. Rehman, W. Khalid, Zagreb polynomials and redefined Zagreb indices of line graph of HAC5C6C7[p, q] nanotube, Open Journal of Chemistry, 1(1) (2018)26-35.

P. Sarkar, A. Pal, General fifth M-polynomials of benzene ring implanted in the P-type-surface in 2D networks, Biointerface Research in Applied Chemistry, 10(6) (2020)6881-6892.

C. P. Li, C. Zhonglin, M. Munir, K. Yasmin, and J. B. Liu, M-polynomials and topological indices of linear chain of benzene, naphthalene and anthracene, Mathematical Biosciences and Engineering, 17(3)(2020)2384-2398.

Y. C. Kwun, A. Ali, W. Nazeer, M. A. Choudhari and

M. Kang, M-polynomials and degree-based topological indices of triangular benzenoid, hourglass and jagged rectangle benzenoid systems, Hindawi, Journal of Chemistry, Volume 2018, Article ID 8213950, 8 pages.

E. Deutsch and S. Klavzar, M-polynomial and degree- based topological indices, Iran Journal of Mathematical Chemistry, 6(2015)93-102.

N. K. Raut, The Zagreb group indices and polynomials, International Journal of Modern Engineering Research, 6(10) (2016)84-87.

S. Javame, M. Ghods, Analysis of K-Banhatti polynomials and calculation of some degree-based indices using (a, b)-Nirmala index in molecular graph and line graph of TUC4C8(S) nanotubes, Chemical Methodologies, 7(2023)237-247.

G. Murugan, K. Julietraja and A. Alsinai, Computation of neighborhood M-polynomial of cyclophenylene and its variants, https://doi. org/10. 1021/acsomega3c07294.

S. Imran, M. K. Siddiqui, M. Imran and M. F. Nadeem, Computing topological indices and polynomials for line graphs, Mathematics, 2018, 6, 137.

H. Ahmad, A. Alwardi and R. Solestina, On the vertex degree polynomial of graphs, TWMS J. App. And Eng. Math. , 13(1)(2023)232-245.

B. Chaluvaraju, H. S. Boregouda and S. A. Diwakar, Hyper Zagreb indices and their polynomials of some special kinds of windmill graphs, International Journal of Advances in Mathematics, 4(2017)21-32.

S. Hayat, M. Imran, Computation of certain topological indices of nanotubes, Journal of Computation and Theoretical Nanoscience, 12(2015)01-07.

F. Dayan, M. Javaid, and M. A. U. Rehman, On leap reduced reciprocal Randic and leap reduced second Zagreb indices of some graphs, Scientific Inquiry and Review, 1(2) (2019)27-35.

T. Augustine, R. Santiago, On neighborhood degree- based topological indices analysis over melamine- based TriCF structure, Symmetry 2023, 15, 653, 1-16.

A. Gayathri, D. Narasimhan, M. Fathima and F. Vincy, Computation of neighborhood degree based topological indices for circumcoronene series of benzenoid, Multidisciplinary Science Journal, Conference paper, Dec. 2023, (ICMAT 23), Mathematics Sci. Journal, (2024)6, e2024ss01112, 1- 6.

M. B. Belay, A. J. M. Khalaf, S. H. Hosseini and M. R. Farahani, Topological indices of subdivision graph and line graph of subdivision graph of the wheel graph, Journal of Discrete Mathematical and Sciences and Cryptography, 24(2) (2021)589-601.

S. Mondal, N. De and A. Pal, The M-polynomial of line graph of subdivision graphs, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2) (2019)2104- 2116.

M. R. Farahani, M. K. Jamil, M. R. R. Kanna and M. Hosamani, The Wiener index and Hosaya polynomial of the subdivision graph of the wheel S(Wn) and line graph of subdivision graph of the wheel L(S(Wn)), Applied Mathematics, 6(2)(2016)21-24.

X. Zhou, M. Habib. T. J. Zia, A. Naseem, A. Hanif and

A.Ye, Topological indices of some classes of graphs, Open Chem., De Gruyter, 17(2019)1483-1490.

G. Su, L. Zu, Topological indices of the line graph of subdivision graphs and their Schur-bounds, Applied Mathematics and Computation, 253(2015)395-401.

S. M. Hosamani, V. Lokesha, I. N. Cangul and K. M. Devendraiah, On certain topological indices of the derived graphs of subdivision graphs, TWMS J. App. Eng. Math. , 6(2)(2016)324-332.

P. S. Ranjini, V. Lokesha and I. Cangul, On the Zagreb indices of the subdivision graphs, Applied Mathematics and Computation, 218(2011)699-702.

A. U. R. Virk, M. N. Jhangeer and M. A. Rehman, Reverse Zagreb and reverse hyper Zagreb indices for silicon carbide Si2C3I[r, s] and Si2C3II[r, s], Eng. Appl. Sci. Lett. , 1(2)(2018)37-50.

V. R. Kulli, Reverse Zagreb, reverse hyper Zagreb indices and their polynomials for rhombus silicate networks, Annals of Pure and Applied Mathematics, 16(1)(2018)47-51.

V. R. Kulli, Revan indices and their polynomials of certain rhombus networks, International Journal of Current Research in Life Sciences, 7(5)(2018)2110- 2116.

V. R. Kulli, Leap indices of graphs, International Journal of Current Research in Life Sciences, 8(1)(2019)2998-3006.

V. R. Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, International Journal of Current Research in Life Sciences, 7(10) (2018)2783- 2791.

S. Mondal, M. K. Siddiqui, N. De and A. Pal, Neighborhood M-polynomial of crystallographic structures, Biointerface Research in Applied Chemistry, 11(2)(2021)9372-9381.

N. K. Raut, Topological indices and M-polynomials of wheel and gear graphs, International Journal of Mathematics Trends and Technology, 67(6)(2021)26- 37.

R. R. Gaur, P. Garg and B. K. Yadav, M-polynomial and topological indices of Hanoi graph and generalized wheel graph, Malaya Journal of Matematik, 8(4) (2020)2149-2157.

R. S. Haoer, Topological indices of metal-organic networks via neighborhood M-polynomial, Journal of Discrete Mathematical Sciences and Cryptography, 24(2) (2021)369-390.

Mohammed Yasin H., M. Suresh, Z. G. Tefera and S.

A.Fufa, M-polynomial and NM-polynomial methods for topological indices of polymers, Hindawi, International Journal of Mathematics and Mathematical Sciences, Volume 2024, Article ID- 1084450, 16 pages.

M. R. Farahani, Zagreb indices and Zagreb polynomials of polycyclic aromatic hydrocarbons PAHc, Journal of Chemical Acta, 2(2013)70-72.

N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH: Weinheim, 2000.

Downloads

Published

2025-02-28

How to Cite

Ryabov, V. (2025). Topological Polynomials and Indices of Line Graphs of Wheel Graphs. Journal of Educational Research and Policies, 7(2), 15–21. https://doi.org/10.53469/jerp.2025.07(02).03

Issue

Section

Articles