Zagreb Polynomials, Co-Polynomials of Bipartite and Strongly Bipartite Graphs

Chandra Prakash Singh

Ex. Head, Department of Physics, Sunderrao Solanke, Mahavidyalaya Majalgaon Dist. Beed (M.S.) India rautnk87@gmail.com

Abstract: First Zagreb polynomial of a graph G with vertex set V(G) and edge set E(G) is defined as $M_I(G,x) = \sum_{uv \in E(G)} x^{d_u + d_v}$ and the first Zagreb index can be obtained from it as $M_I(G) = \frac{\partial M_1(G,x)}{\partial x}|_{x=1}$. In this paper Zagreb polynomials, co-polynomials and corresponding Zagreb indices, co-indices are obtained for path, cycle, double and strong double graphs.

Keywords: Cycle graph, double graph, path graph, strong double graph, Zagreb co-polynomial, Zagreb index, Zagreb polynomial

1. Introduction

Let G be a simple, finite, connected graph with vertex set V(G) and edge set E(G). The degree of a vertex $u \in V(G)$ is denoted by du and is the number of vertices adjacent to u. The edge connecting the vertices u and v is denoted by uv. A molecular graph is presentation of the structural formula of a chemical compound in terms of graph theory whose vertices correspond to the atoms of compound and edges correspond to chemical bonds [1]. The topological index is a numerical parameter mathematically derived from the graph structure, several such topological indices have been considered in theoretical chemistry and have found some applications in QSPR/QSAR study [2].

A complement \overline{G} of a graph G consist of the same set of vertices, where two vertices v and w are adjacent by an edge vw if and only if they are not adjacent in G.Hence vw∈ $E(\bar{G}) \iff vw \notin E(G)$. A complement graph consists of a number of edges and the degree of vertex v which are represented as $\overline{m} = {n \choose 2} - m$ and $d_{\overline{G}}$ (v) = n-1- $R_G(v)$ respectively. If the graph G has n vertices and m edges, then double graph D[G] has 2n vertices 4m edges. The first, second Zagreb indices and geometric-arithmetic index of double and strong double graph of path and cycle graphs were studied in [3]. The double graph of G is constructed by considering two copies of G in which a vertex vi in first copy is adjacent to a vertex v_j in the second copy of v_i and v_j [4]. The strong double is a double in which a vertex v_i in the copy is adjacent to a vertex v_j in the second copy if i = j. It is denoted as SD[G] [5]. Zagreb indices and multiplicative Zagreb indices of double graphs of subdivision graphs were investigated by M. Togan et al. [6].

Degree based topological indices of strong double graphs have been studied in [7-8]. The relations between some Zagreb indices and Zagreb co-indices of graphs can be seen in papers [9-10]. General fifth Zagreb polynomial of benzene ring were studied in [11]. Li and W. Gao expressed the fourth Zagreb polynomial and sixth polynomial in terms eccentricity of a graph [12]. The Zagreb group indices and polynomials are studied in [13]. Zagreb indices and Zagreb polynomials have been studied in [14]. Distance based topological indices of double and strong double graphs were

computed by Mirajkar [15]. The properties of strong double graphs of spanning trees of G were found in [16].

The Zagreb polynomials are defined as [17-18]

s are defined as
$$[1/-16]$$

 $M_1(G,x) = \sum_{\mathbf{uv} \in \mathbf{E}(\mathbf{G})} x^{\mathbf{d_u} + \mathbf{d_v}}, (1)$
 $M_2(G,x) = \sum_{\mathbf{uv} \in \mathbf{E}(\mathbf{G})} x^{\mathbf{d_u} \times \mathbf{d_v}}, (2)$
 $M_3(G,x) = \sum_{\mathbf{uv} \in \mathbf{E}(\mathbf{G})} x^{\mathbf{d_u} (\mathbf{d_u} + \mathbf{d_v})}, (3)$
 $M_4(G,x) = \sum_{\mathbf{uv} \in \mathbf{E}(\mathbf{G})} x^{\mathbf{d_u} (\mathbf{d_u} + \mathbf{d_v})}, (4)$
 $M_5(G,x) = \sum_{\mathbf{uv} \in \mathbf{E}(\mathbf{G})} x^{\mathbf{d_v} (\mathbf{d_u} + \mathbf{d_v})}, (5)$
 $\overline{M_1}(G,x) = \sum_{\mathbf{uv} \notin \mathbf{E}(\mathbf{G})} x^{(\mathbf{d_u} \times \mathbf{d_v})}, (6)$
 $\overline{M_2}(G,x) = \sum_{\mathbf{uv} \notin \mathbf{E}(\mathbf{G})} x^{(\mathbf{d_u} \times \mathbf{d_v})}, (7)$
 $\overline{M_3}(G,x) = \sum_{\mathbf{uv} \notin \mathbf{E}(\mathbf{G})} x^{\mathbf{d_u} (\mathbf{d_u} + \mathbf{d_v})}, (9)$

ISSN: 2006-1137

And

$$\overline{M_5}(G,x) = \sum_{uv \notin E(G)} x^{d_v(d_u + d_v)}$$
 (10)

The first Zagreb index can be calculated as the first derivative of first Zagreb polynomial, x = 1 by [19] $M_1(G) = \frac{\partial M_1(G,x)}{\partial x} |_{x=1}.$ (11)

All the symbols and notations used in this paper are standard and taken mainly from books of graph theory [20-22]. In this paper we study Zagreb polynomials, co-polynomials of double, strong double graphs of path graph P4 and cycle graph C₄.

2. Materials and Methods

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). Molecular graph is a graph in which the vertices correspond to the atoms and the edges to the bonds of a molecule. Molecular graphs of path graph P₄, double graph D[P₄], strong double graph SD[P₄] and cycle graph C4, double graph of C4 and strong double graph of C4 are shown figure (1-2). Degree d_u of a vertex u is the number of vertices adjacent to u. The order and size of strong double SD[G] are 2n and 4m+n respectively. The degree of a vertex v in SD[G] is $deg_{SD[G]} = 2deg_G[v] + 1$. If the graph has n vertices and the m edges, then the double graph D[G] has 2n vertices and 4m edges, in particular $deg_{D[G]}(v,2) =$ $2\deg_G(v)$. The complement of G denoted by \bar{G} , is a simple graph on the same set of vertices V(G) in which two vertices u and v are adjacent, that is connected by an edge uv, iff they are not adjacent in G. Hence $uv \in \bar{G} \Leftrightarrow uv \notin E(G)$. Degree of a vertex u in G is denoted d_u ; the degree of the same vertex is \bar{G} is given by $deg_{\bar{G}}$ (u) = n-1-d_u. Degrees of vertices of path, cycle, double, strong double graphs are used in finding the Zagreb polynomials and co-polynomials.

3. Results and Discussion

It is observed from molecular graph of path graph P_4 , there are $|E_{1,2}|=$ n-2 and $|E_{1,2}|=$ n-3 edges. For double graph of P_4 the edge partition is $|E_{2,4}|=$ n and $|E_{4,4}|=$ n-4 and in strong double graph of P_4 , it is $|E_{3,4}|=$ n, $|E_{4,4}|=$ n-4 and $|E_{3,3}|=$ n-6. The Zagreb polynomials, co-polynomials of P_4 , $D[P_4]$ and $SD[P_4]$ are computed as follows.

Path graph P4

Theorem 1.1. First Zagreb polynomial of P_4 is $(n-2)x^3+(n-3)x^4$.

Proof. First Zagreb polynomial of P₄

$$M_1(G,x) = \sum_{u \in V(G)} x^{d_u + d_v}$$

$$= |E_{1,2}|x^{1+2} + |E_{2,2}|x^{2+2}$$

$$= (n-2)x^3 + (n-3)x^4$$
.

Theorem 1.2. Second Zagreb polynomial of P_4 is $(n-2)x^2+(n-3)x^4$.

Proof. Second Zagreb polynomial of P₄

$$M_2(G,x) = \sum_{u \in V(G)} x^{d_u \times d_v}$$

$$= |E_{1,2}|x^{1\times 2} + |E_{2,2}|x^{2\times 2}$$

$$= (n-2)x^2 + (n-3)x^4.$$

Theorem 1.3. Third Zagreb polynomial of P₄ is (n-2)x

Theorem 1.4. Fourth Zagreb polynomial of P_4 is $(n-2)x^3+(n-3)x^8$.

Theorem 1.5. Fifth Zagreb polynomial of P_4 is $(n-2)x^6+(n-3)x^8$.

Theorem 1.6. First Zagreb co-polynomial of P_4 is $(n-2)x^3+(n-3)x^2$.

Proof. First Zagreb co-polynomial of P₄

$$\overline{M_1}(G,x) = \sum_{u \in \notin E(G)} x^{d_u + d_v}$$

$$= |E_{1,2}|x^{2+1} + |E_{2,2}|x^{1+1}$$

$$= (n-2)x^3 + (n-3)x^2.$$

Theorem 1.7. Second Zagreb co-polynomial of P_4 is $(n-2)x^2+(n-3)x$.

Proof. Second Zagreb co-polynomial of P₄

$$\overline{M_2}(G,x) = \sum_{u \in \notin E(G)} x^{d_u \times d_v}$$

$$= |E_{1,2}|x^{2\times 1} + |E_{2,2}|x^{1\times 1}$$

$$= (n-2)x^2 + (n-3)x$$
.

Theorem 1.8. Third Zagreb co-polynomial of P_4 is (n-2)x+(n-3)

Theorem 1.9. Fourth Zagreb co-polynomial of P_4 is $(n-2)x^6+(n-3)x^2$.

Theorem 1.10. Fifth Zagreb co-polynomial of P_4 is $(n-2)x^3+(n-3)x^2$.

ISSN: 2006-1137

Theorem 2.1. First Zagreb polynomial of double graph of P_4 is $4nx^{12}+4(n-4)x^{16}$.

Theorem 2.2. Second Zagreb polynomial of double graph of P_4 is $4nx^{32}+4(n-4)x^{64}$.

Theorem 2.3. Third Zagreb polynomial of double graph of P_4 is $4n x^4$.

Theorem 2.4. Fourth Zagreb polynomial of double graph of P_4 is $4nx^{48}+4(n-4)x^{128}$.

Proof. Fourth Zagreb polynomial double graph of P₄

$$M_4(D[G],x) = \sum_{uv \in E(G)} x^{d_u(d_u + d_v)}$$

$$= 4 \sum_{uv \in E(D[G])} x^{2d_u(2d_u + 2d_v)}$$

$$=4|E_{2,4}|x^{2d_{\mathbf{u}}(2d_{\mathbf{u}}+2d_{\mathbf{v}})}+4|E_{4,4}|x^{2d_{\mathbf{u}}(2d_{\mathbf{u}}+2d_{\mathbf{v}})}.$$

$$=4nx^{48}+4(n-4)x^{128}$$

Theorem 2.5. Fifth Zagreb polynomial of double graph of P_4 is $4nx^{48}+4(n-4)x^{128}$.

Proof. Fifth Zagreb polynomial of double graph of P₄.

$$M_5(D[G],x) = \sum_{uv \in E(G)} x^{d_v(d_u + d_v)}$$

$$=4\sum_{\mathbf{u}\mathbf{v}\in\mathrm{E}(\mathrm{D}[\mathrm{G}])}x^{2\mathrm{d}_{\mathbf{u}}(2\mathrm{d}_{\mathbf{u}}+2\mathrm{d}_{\mathbf{v}})}$$

$$=4|E_{2,4}|x^{2d_v(2d_u+2d_v)}+4|E_{4,4}|x^{2d_v(2d_u+2d_v)}.$$

$$=4nx^{48}+4(n-4)x^{128}$$
.

Theorem 2.6. First Zagreb co-polynomial of double graph of P_4 is $4nx^6+4(n-4)x^{-2}$.

Theorem 2.7. Second Zagreb co-polynomial of double graph of P_4 is $4nx^{-3}+4(n-4)x$.

Theorem 2.8. Third Zagreb co-polynomial of double graph of P_4 is $4nx^4$ -(n-4).

Theorem 2.9. Fourth Zagreb co-polynomial of double graph of P_4 is $(4n)x^{40}+4(n-4)x^{18}$.

Proof. Fourth Zagreb co-polynomial of double graph of P₄

$$\overline{M_4}(G,x) = \sum_{u \in \notin E(G)} x^{d_u(d_u + d_v)}$$

$$=4\sum_{\mathbf{u}\in\notin E(G)}\mathbf{x}^{2d_{\mathbf{u}}(2d_{\mathbf{u}}+2d_{\mathbf{v}})}$$

$$=4|E_{2,4}|x^{5(5+3)}+4|E_{4,4}|x^{3(3+3)}$$

$$= (4n)x^{40} + 4(n-4)x^{18}.$$

Theorem 2.10. Fifth Zagreb co-polynomial of double graph of P_4 is $4nx^{24}+4(n-4)x^{18}$.

Proof. Fifth Zagreb co-polynomial of double graph of P₄

$$\overline{M_5}(G,x) = \sum_{u \notin E(G)} x^{d_v(d_u + d_v)}$$

$$=4\sum_{\mathbf{u}\in\notin E(G)}\mathbf{x}^{2d_{\mathbf{v}}(2d_{\mathbf{u}}+2d_{\mathbf{v}})}$$

$$=4|E_{2,4}|x^{3(5+3)}+4|E_{4,4}|x^{3(3+3)}$$

$$=4nx^{24}+4(n-4)x^{18}$$
.

Theorem 3.1. First Zagreb polynomial of strong double graph of P_4 is $nx^{16} + (n-4)x^{18} + (n-6)x^{14}$.

Proof. First Zagreb polynomial of strong double graph of P₄

$$\begin{split} &M_1(SD[G],x) = \sum_{uv \in E(G)} x^{d_u + d_v} \\ &= \\ &|E_{3,4}|x^{[2d_u + 1] + [2d_v + 1]} + |E_{4,4}|x^{[2d_u + 1] + [2d_v + 1]} + |E_{3,3}| \\ &x^{[2d_u + 1] + [2d_v + 1]} \\ &= nx^{16} + (n-4)x^{18} + (n-6)x^{14}. \end{split}$$

Theorem 3.2. Second Zagreb polynomial of strong double graph of P_4 is $nx^{63}+(n-4)x^{81}+(n-6)x^{49}$.

Proof. Second Zagreb polynomial of strong double graph of P₄

$$\begin{split} &M_2(SD[G],x) = \sum_{uv \in E(G)} x^{d_u \times d_v} \\ &= \\ &|E_{3,4}|x^{[2d_u+1] \times [2d_v+1]} + |E_{4,4}|x^{[2d_u+1] \times [2d_v+1]} + |E_{3,3}| \\ &x^{[2d_u+1] \times [2d_v+1]} \\ &= nx^{63} + (n-4)x^{81} + (n-6)x^{49}. \end{split}$$

Theorem 3.3. Third Zagreb polynomial of strong double graph of P_4 is $nx^2+(2n-10)$.

Theorem 3.4. Fourth Zagreb polynomial of strong double graph of P_4 is $nx^{112} + (n-4)x^{162} + (n-6)x^{98}$.

Theorem 3.5. Fifth Zagreb polynomial of strong double graph of P_4 is $nx^{144} + (n-4)x^{162} + (n-6)x^{98}$.

Theorem 3.6. First Zagreb co-polynomial of strong double graph of P_4 is $(n-6)x^{18}+n x^{16}+(n-4)x^{14}$.

Theorem 3.7. Second Zagreb co-polynomial of strong double graph of P_4 is $(n-6)x^{81}+n x^{63}+(n-4)x^{49}$.

Theorem 3.8. Third Zagreb co-polynomial of strong double graph of P_4 is $nx^2+2n-10$.

Theorem 3.9. Fourth Zagreb co-polynomial of strong double graph of P_4 is $(n-6)x^{162}+nx^{144}+(n-4)x^{98}$.

Proof. Fourth Zagreb co-polynomial of double graph of P₄ \overline{M} (SD[C] v) = ∇ $\mathbf{v}_{\mathbf{u}} \cdot \mathbf{v}_{\mathbf{u}} \cdot \mathbf{v}_{\mathbf{u}} \cdot \mathbf{v}_{\mathbf{u}}$

$$\begin{split} \overline{M_4}(\text{SD[G]}, x) &= \sum_{u \in \not\in E(G)} x^{d_u(d_u + d_v)} \\ &= \sum_{u \in \not\in E(G)} x^{(2d_u + 1)[(2d_u + 1) + (2d_v + 1)]} \\ &= |E_{3,3}| x^{(2d_u + 1)[(2d_u + 1) + (2d_v + 1)]} \\ &+ |E_{3,4}| x^{(2d_u + 1)[(2d_u + 1) + (2d_v + 1)]} + |E_{4,4}| \\ &x^{(2d_u + 1)[(2d_u + 1) + (2d_v + 1)]} \\ &= (n - 6) x^{162} + n x^{144} + (n - 4) x^{98}. \end{split}$$

Theorem 3.10. Fifth Zagreb co-polynomial of strong double graph of P_4 is $(n-6)x^{162}+nx^{112}+(n-4)x^{98}$.

Proof. Fifth Zagreb co-polynomial of double graph of P₄ $\overline{M_5}(SD[G],x) = \sum_{u \in eE(G)} x^{d_u(d_u+d_v)}$

$$=|E_{3,3}|x^{(2d_V+1)[(2d_U+1)+(2d_V+1)]} +|E_{3,4}|x^{(2d_V+1)[(2d_U+1)+(2d_V+1)]} +|E_{4,4}| x^{(2d_V+1)[(2d_U+1)+(2d_V+1)]} = (n-6)x^{162}+nx^{112}+(n-4)x^{98}.$$

Cycle graph C₄

It is observed from molecular graph of cycle graph C_4 there are $|E_{2,2}|$ = n edges. For double graph of $D[C_4]$, the edge partition is $|E_{4,4}|$ =2n and in strong double graph $SD[C_4]$ it is

 $|E_{55}|=3n$. The Zagreb polynomials, co-polynomials of cycle graph C_4 , $D[C_4]$ and $SD[C_4]$ are computed as follows.

ISSN: 2006-1137

Theorem 4.1. First Zagreb polynomial of C₄ is nx⁴.

Theorem 4.2. Second Zagreb polynomial of C₄ is nx⁴.

Theorem 4.3. Third Zagreb polynomial of C₄ is n.

Theorem 4.4. Fourth Zagreb polynomial of C4 is nx8.

Theorem 4.5. Fifth Zagreb polynomial of C₄ is nx⁸.

Theorem 4.6. First Zagreb co-polynomial of C₄ is nx².

Theorem 4.7. Second Zagreb co-polynomial of C₄ is nx.

Theorem 4.8. Third Zagreb co-polynomial of C₄ is n.

Theorem 4.9. Fourth Zagreb co-polynomial of C₄ is nx².

Theorem 4.10. Fifth Zagreb co-polynomial of C₄ is nx².

Theorem 5.1. First Zagreb polynomial of double graph of C_4 is $8x^{16}$.

Proof. First Zagreb polynomial of double graph of C₄ $M_1(D[G],x) = \sum_{uv \in E(G)} x^{d_u+d_v}$ = $4|E_{4,4}|x^{2d_u+2d_v}$ = $8nx^{16}$.

Theorem 5.2. Second Zagreb polynomial of double graph of C₄ is 8nx⁶⁴.

Proof. Second Zagreb polynomial of double graph of C₄ $M_2(D[G],x) = \sum_{uv \in E(G)} x^{d_u \times d_v}$

 $=4|E_{4,4}|x^{2d_u\times 2d_v}$

 $= 8nx^{64}$.

Theorem 5.3. Third Zagreb polynomial of double graph of C_4 is 8n.

Theorem 5.4. Fourth Zagreb polynomial of double graph of C_4 is $8nx^{128}$.

Theorem 5.5. Fifth Zagreb polynomial of double graph of C_4 is $8nx^{128}$.

Theorem 5.6. First Zagreb co-polynomial of double graph of C₄ is 8nx¹².

Theorem 5.7. Second Zagreb co-polynomial of double graph of C_4 is $8nx^{36}$.

Theorem 5.8. Third Zagreb co-polynomial of double graph of C₄ is 8n.

Theorem 5.9. Fourth Zagreb co-polynomial of double graph of C_4 is $8nx^{72}$.

Proof. Fourth Zagreb co-polynomial of double graph of C₄ $M_4(D[G],x) = \sum_{uv \notin E(G)} \ x^{d_u(d_u+d_v)}$

 $=4|E_{4,4}|x^{2d_u(2d_u+2d_v)}$

 $=8nx^{72}$.

Theorem 5.10. Fifth Zagreb co-polynomial of double graph of C_4 is $8nx^{72}$.

Proof. Fifth Zagreb co-polynomial of double graph of C₄ $M_5(D[G],x) = \sum_{uv \notin E(G)} x^{d_u(d_u+d_v)}$ $= 4|E_{4,4}|x^{2d_v(2d_u+2d_v)}$ $= 8nx^{72}.$

Theorem 6.1. First Zagreb polynomial of strong double graph of C_4 is $(2n+4)x^{22}$.

Proof. First Zagreb polynomial of strong double graph of C₄ $M_1(SD[G],x) = \sum_{uv \in E(G)} x^{d_u+d_v}$ $= |E_{5,5}|x^{(2d_u+1)+(2d_v+1)}$

$$=(2n+4)x^{22}$$
.

Theorem 6.2. Second Zagreb polynomial of strong double graph of C_4 is $(2n+4)x^{121}$.

Proof. Second Zagreb polynomial of strong double graph of C₄

$$\begin{aligned} &M_2(SD[G],x) = \sum_{uv \in E(G)} x^{d_u \times d_v} \\ &= |E_{5,5}|x^{(2d_u+1) \times (2d_v+1)} \\ &= (2n+4)x^{121}. \end{aligned}$$

Theorem 6.3. Third Zagreb polynomial of strong double graph of C_4 is 2n+4.

Theorem 6.4. Fourth Zagreb polynomial of strong double graph of C_4 is $(2n+4)x^{242}$.

Theorem 6.5. Fifth Zagreb polynomial of strong double graph of C_4 is $(2n+4)x^{242}$.

Theorem 6.6. First Zagreb co-polynomial of strong double graph of C_4 is $(2n+4)x^{-8}$.

Theorem 6.7. Second Zagreb co-polynomial of strong double graph of C_4 is $(2n+4)x^{16}$.

Theorem 6.8. Third Zagreb co-polynomial of strong double graph of C_4 is (2n+4).

Theorem 6.9. Fourth Zagreb co-polynomial of strong double graph of C_4 is $(2n+4) x^{32}$.

Proof. Fourth Zagreb co-polynomial of strong double graph of C4

$$\begin{split} \overline{M_4}(SD[G],x) &= \sum_{uv \notin E(G)} x^{d_u(d_u+d_v)} \\ &= |E_{5,5}| \sum_{uv \in E(G)} x^{(2d_u+1)+[(2d_u+1)+(2d_v+1)]} \\ &= (2n+4) x^{32}. \end{split}$$

Theorem 6.10. Fifth Zagreb co-polynomial of strong double graph of C_4 is (2n+4) x^{32} .

Proof. Fifth Zagreb co-polynomial of strong double graph of C₄

ISSN: 2006-1137

$$\begin{split} \overline{M_5}(SD[G], x) &= \sum_{uv \notin E(G)} x^{d_u(d_u + d_v)} \\ &= |E_{5,5}| \sum_{uv \in E(G)} x^{(2d_v + 1) + [(2d_u + 1) + (2d_v + 1)]} \\ &= (2n + 4) x^{32}. \end{split}$$

Zagreb indices and co-indices

1) First Zagreb index of double graph of P₄ $M_1D[G] = \frac{\partial M_1(D[G],x)}{\partial x}|_{x=1}$ (n-2)3+(n-3)4
=7n-18.

2) Fourth Zagreb co-index of double graph of C₄ $\overline{M_4}D[G] = \frac{\partial \overline{M_4}(D[G],x)}{\partial x}|_{x=1}$ =4(n²+2n)162
=648(n²+2n).

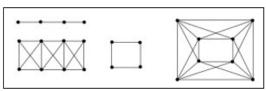


Figure 1: The double graphs of P_4 and C_4 .

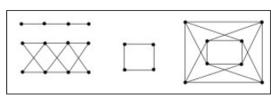


Figure 2: The strong double graphs of P_4 and C_4 .

Table 1: Zagreb indices, co-indices of path, cycle, double, strong double graphs of P₄ and C₄.

Zagreb indices →	M_1	M_2	M_3	M_4	M_5	$\overline{M_1}$	$\overline{\mathrm{M_2}}$	$\overline{\mathrm{M}_{3}}$	$\overline{M_4}$	$\overline{\mathrm{M}_{\mathrm{5}}}$
Graph↓										
P ₄	7n-18	6n-16	n-2	11n-30	14n-36	5n-12	3n-7	2n-5	8n-18	5n-12
D[G]P ₄	112n-256	384n-256	16n	320n-512	704n-2048	56n+32	-(12n+16)	17n-4	232n-288	156n-288
SD[G]P ₄	48n-156	193n-618	4n-10	372n-1236	306n-1236	48n-164	193n-682	4n-10	306n-1364	372n-1364
C ₄	4n	4n	0	8n	8n	2n	N	0	2n	2n
D[G]C ₄	128n	512n	0	1024n	1024n	96n	288n	0	576n	576n
SD[G]C ₄	22(2n+4)	121(2n+4)	0	242(2n+4)	242(2n+4)	-8(2n+4)	16(2n+4)	0	32(2n+4)	32(2n+4)

4. Conclusion

Zagreb polynomials, co-polynomials and corresponding Zagreb indices of path, cycle, double, strong double graphs for path graph P₄ and cycle graph C₄ are studied.

References

- [1] M. R. R. Kanna, S. Roopa and L. Parashivamurthy, Topological indices of Vitamin D₃, International Journal of Engineering and Technology, 7(4) (2018) 6276-6284.
- [2] V. R. Kulli, On Banhatti-Sombor indices, SSRG International Journal of Applied Chemistry, 8(1) (2001) 21-25.
- [3] M. Imran, S. Akhter, Degree based topological indices of double graphs and strong double graphs, Discrete

Mathematics and Applications, 9(5) (2017) 1750066-15

- [4] E. Munarini, C. Perelli, A. Scaliola and N. Z. Salvi, Double graphs, Discrete Mathematics, 302(2002) 242-254.
- [5] V. M. Diudea, J. Chem. Inf. Comput. Sci., 37(1997) 292-299.
- [6] M. Togan, A. Yurttas, A. S. Cervic and N. Congul, Zagreb indices and multiplicative Zagreb indices of double graphs of subdivision graphs, TWMS Journal of Applied Engineering Mathematics, 9(2) (2019) 404-412.
- [7] M. Rafiullah, H. Muhammad, A. Siddiqui, M. K. Siddiqui and M. Dhlamini, On degree-based topological indices for strong double graphs, Hindawi, Journal of Chemistry, Volume 2021, Article Id-4852459, 12 pages.

ISSN: 2006-1137

- [8] M. S. Sardar, M. A. Ali, F. Asfraf and M. Cancan, On topological indices of double and strong double graphs of silicon carbide Si2C3-I[p, q], Eurosian Chem. Commun., 5(2023) 37-49.
- [9] K. Kiruthika, Zagreb indices and Zagreb co-indices of some graph operations, International Journal of Advanced Research in Engineering and Technology, 7(3) (2016) 25-41.
- [10] I. Gutmn, B. Furtula, Z. K. Vukicevic and G. Popivoda, On Zagreb indices and co-indices, MATCH Mathematical and Computer Chemistry, 74(2015) 5-16.
- [11] P. Sarkar, A. Pal, General fifth M-polynomials of benzene ring implanted in the P-type surface in 2D network, Biointerface Research in Applied Chemistry, 10(6) (2020) 6881-6892.
- [12] L. Yan, W. Gao, Eccentric related indices of an infinite class of nanostar dendrimers (II), Journal of Chemical and Pharmaceutical Research, 8(5) (2016) 359-362.
- [13] N. K. Raut, The Zagreb group indices and polynomials, International Journal of Modern Engineering Research, 6(10) (2016) 84-87.
- [14] M. R. Farahani, Zagreb indices and Zagreb polynomials of polycyclic aromatic hydrocarbons, Journal of Chemical Acta, 2(2013) 70-72.
- [15] K. Mirajkar, S. Konnur, Distance-based topological indices of double graphs and strong double graphs, Ratio Mathematics, Volume 48, 2023, 1-20.
- [16] T. A. Chisti, H. A. Ganie and S. Pirzada, Properties of strong double graphs, Journal of Discrete Mathematical Science and Cryptography, 4(17) (2014) 311-319.
- [17] A. U. Rehaman, W, Khalid, Zagreb polynomials and redefined Zagreb indices of line graph of HAC5C6C7[p, q] nanotube, Open Journal of Chemistry, 1(1) (2018) 26-35.
- [18] B. Basavanagoud, P. Jakkannavar, On the Zagreb polynomials of transformation graphs, International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(6) (2018) 328-335.
- [19] M. R. Farahani, Zagreb indices and Zagreb polynomials of polycyclic aromatic hydrocarbons PAHs, Journal of Chemical Acta, 2(2013) 70-72.
- [20] Narsing Deo, Graph Theory, Prentice-Hall of India, New Delhi (2007).
- [21] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.
- [22] R. Todeschini, and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH:Weinheim, 2000.