

Journal of Educational Research and Policies ISSN: 2006-1137Journal of Educational Research and Policies ISSN: 2006-1137

http://wwwwww..bbrryyaannhhoouusseeppuubb..ocrogm

 VoV lo ul mu eme 7 Issue 78 2025

Research on a Training Model to Enhance the

Enterprise Innovation and Practice Ability of

Computer Science Students in Colleges and

Universities

Yingying Zhang

Huanghuai University, Zhumadian, Henan, China

Abstract: This paper looks at how to better prepare computer science students for real-world innovation challenges. We surveyed 126

tech companies and found three main problems with current university programs: (1) course content isn’t keeping up with new

technologies, (2) students don’t get enough hands-on experience, and (3) grading focuses too much on tests rather than practical skills. To

fix this, we created a new teaching approach that combines: Up-to-date courses that change as technology advances. More opportunities to

work on real company projects. Better ways to track student progress using digital portfolios; After testing this approach, we saw great

results: 41% more students developed strong technical skills; Companies were 37% happier with graduates’ abilities; Student startup

projects increased by 63%.

Keywords: Computer Science, Innovation Practice Capability, University-Enterprise Collaboration, CDIO Model, Competency Profile,

1+X Certification.

1. Introduction

Today’s tech industry needs graduates who can solve real

problems, but many students aren’t fully prepared. A recent

report shows 82% of companies think new hires lack

important innovation skills [1]. There are three key reasons

for this: Classes don’t teach enough about new technologies

like AI; School projects don’t match what companies actually

need; Grades don’t properly measure important job skills; Our

research examined 70 actual job postings and programs at 42

universities [2]. We then created and tested a new teaching

method that: Updates courses faster based on what’s

happening in the industry; Connects students with real

company projects through a “project marketplace”; Uses

modern tools to track and verify student skills; After three

years of testing at five universities, this approach helped

students: Get 28% better at solving complex problems; Be 45%

more successful at turning ideas into real products; This

shows our method can help bridge the gap between school and

work in the tech field. The digital deficit and the need to align

university education with industry demands, especially in this

era of fast-changing technology and the advancement of

generative AI, are still subjects of ongoing debate and are the

motivation for this paper.

2. Computer Professional Competency

Requirements

2.1 Enterprise Research Data Analysis

Our team talked to hiring managers across the tech industry,

and here’s what we learned about what makes computer

science graduates stand out in today’s job market. Companies

are looking for much more than just good grades - they want

well-rounded candidates who bring three key things to the

table: strong technical skills, real-world experience, and good

people skills.

Let’s break this down: First, the technical stuff still matters a

lot. Employers want people who can actually code - and not

just in one language. Python and Java are the big ones

everyone mentions, but knowing C++ gives you an extra edge.

Beyond just writing code, companies really care about

whether you understand how to organize data efficiently,

work with databases, and use cloud technologies. And get this

- skills in hot areas like AI, machine learning, and blockchain

are becoming must-haves across all kinds of companies, not

just tech giants [3].

But here’s where it gets interesting - 3 out of 4 hiring

managers told us they’ll take someone with less classroom

knowledge but more hands-on experience any day. They’re

tired of candidates who can talk about programming concepts

but can’t actually build things. The graduates who get hired

fastest are those who’ve worked on real projects, especially

ones that shipped to actual customers. One hiring manager put

it bluntly: “We can teach the technical details, but we can’t

teach experience.”

The soft skills part surprised us too. Companies aren’t just

looking for coding robots - they want team players who can

explain their ideas clearly, work well with others, and solve

unexpected problems. Many new hires struggle with this part -

they might be great at writing algorithms but can’t collaborate

effectively or adapt when project requirements change.

2.2 Identification of Core Competency Gaps

An in-depth analysis reveals four primary competency

deficiencies among current computer science graduates:

2.2.1 Deficiencies in Emerging Technology Mastery

Most computer science programs do a decent job teaching the

basics - things like introductory programming, how operating

systems work, and computer networking principles. These

45

DOI: 10.53469/jerp.2025.07(08).10

Journal of Educational Research and Policies ISSN: 2006-1137Journal of Educational Research and Policies ISSN: 2006-1137

http://wwwwww..bbrryyaannhhoouusseeppuubb..ocrogm

 VoV lo ul mu eme 7 Issue 78 2025

fundamentals are important, and schools have been teaching

them well for years. But here’s the issue: the tech world

moves much faster than university curricula can keep up with

[4].

When it comes to the hottest, most in-demand areas of tech

right now - artificial intelligence, big data, cloud computing -

most students aren’t getting the thorough, organized

education they need. Instead, what typically happens is:

Students interested in these new fields have to piece together

their own education. They might watch some online tutorials,

complete a short coding bootcamp, or work through a few

online courses. While these resources can be helpful, they

don’t provide the same deep, structured learning experience

as a well-designed university course would.

Many graduates enter their first tech jobs eager to work with

new technologies, only to discover they’re not properly

prepared. While they may have some basic knowledge of AI

or cloud computing, they lack the deeper, practical

understanding required for professional work.

This gap causes frustration on both sides. New employees feel

stressed and in over their heads when given real-world tasks.

Employers have to spend months (and significant resources)

teaching fundamentals that should have been covered in

school. It’s a lose-lose situation that stems from education not

keeping pace with what the tech industry actually needs.

The situation is especially frustrating because these aren’t

niche specialties anymore. AI and cloud computing have

become essential tools across nearly every tech sector. Big

data skills are required for everything from social media apps

to medical research. Yet most computer science programs still

treat these as optional extras rather than core requirements.

2.2.2 nsufficient Engineering Practice Capabilities

One of the biggest complaints we hear from tech employers is

that new graduates often struggle with the practical aspects of

software development. While universities do a good job

teaching computer science theory, many fall short when it

comes to preparing students for real-world development

work.

Here’s what’s happening:

Students spend years learning algorithms and data structures

in the classroom, but when they get their first job, they’re

often shocked by how different actual software development

is from their school projects. They can write code that works,

but they don’t know how to:

Write clean, maintainable code that other developers can

easily understand and modify

Use version control systems like Git to collaborate effectively

with a team

Track down and fix bugs in complex systems; Optimize code

to run faster and use fewer resources; Work with the tools and

processes that real development teams use every day; The

problem goes even deeper. Many graduates have never

experienced how modern software teams actually work.

They’re unfamiliar with: Agile development methods where

work is broken into short sprints; DevOps practices that help

teams deploy code frequently and reliably; Continuous

integration systems that automatically test new code; The

collaborative nature of professional software development.

This gap between classroom learning and workplace

requirements creates real challenges [5]. Companies report

that it often takes 6-12 months to get new graduates fully up to

speed - time that could be better spent contributing to projects.

New hires feel frustrated because they’re constantly running

into problems they weren’t prepared for.

2.2.3 Interdisciplinary Knowledge Integration Shortfalls

These days, technology touches every industry - and that’s

creating exciting new opportunities for computer science

graduates who can bridge the gap between tech and other

fields. But there’s a problem: most degree programs aren’t

preparing students for these hybrid roles. Here’s what we’re

seeing: In healthcare, hospitals and clinics need developers

who understand both programming and medical concepts. A

developer building a patient records system needs to know

what “comorbidities” are and how doctors actually work.

Without this knowledge, they might create something

technically perfect that doctors find useless in practice. In

finance, tech teams are building trading algorithms and

mobile banking apps. But if programmers don’t understand

basic financial concepts like risk assessment or regulatory

compliance, their code could cause serious problems. One

bank manager told us, “We spend months teaching our new

hires the finance basics they should have learned in school.”

The same pattern appears across industries: Automotive

companies need developers who understand both software

and mechanical engineering; Retailers want tech staff who

grasp inventory management and supply chain logistics;

Media companies look for programmers familiar with content

production workflows. Yet most computer science programs

still treat these industry-specific knowledge areas as someone

else’s problem [6]. Students graduate with strong technical

skills but no context for how to apply them in real business

settings. The result? Long, frustrating adjustment periods

where new hires struggle to understand the industries they’re

working in.

2.2.4 Underdeveloped Professional Soft Skills

Many CS graduates lack key workplace skills like

communication, teamwork, and handling pressure. While

strong at technical problem-solving, they often struggle with

collaboration and big-picture thinking. Employers now want

developers who can both solve technical challenges and work

effectively in teams. This skills gap shows schools need to

better balance technical training with professional

development.

3. Diagnosis of Current Training Model Issues

3.1 Curriculum System Problems

An examination of contemporary computer science education

46

Journal of Educational Research and Policies ISSN: 2006-1137Journal of Educational Research and Policies ISSN: 2006-1137

http://wwwwww..bbrryyaannhhoouusseeppuubb..ocrogm

 VoV lo ul mu eme 7 Issue 78 2025

reveals several systemic deficiencies in curriculum design:

3.1.1 Curricular Content Lagging Behind Technological

Evolution

Computer science programs are struggling to keep pace with

the fast-changing tech industry. While companies urgently

need developers skilled in modern languages like Python, Go,

and Rust, many universities continue teaching outdated

technologies. But walk into many computer science

classrooms, and you’ll still find students spending semester

after semester learning older languages like C and Visual

Basic that, while still having some uses, aren’t what

employers need most right now. Even more concerning is how

schools are handling the biggest revolutions in tech [7]. Fields

like artificial intelligence (the technology behind ChatGPT

and smart assistants), cloud computing (how companies like

Netflix store and process massive amounts of data), and edge

computing (bringing processing power closer to where data is

collected) are transforming entire industries. Yet most

computer science degrees barely scratch the surface of these

subjects, if they cover them at all.

3.1.2 Imbalanced Theory-Practice Ratio

There’s a troubling disconnect in how we teach computer

science today. Even though coding is ultimately about

building real things that work, many degree programs spend

way too much time on abstract theory and not nearly enough

on actual hands-on practice. Students might spend entire

semesters studying complex math concepts or how compilers

work internally, but then graduate without ever having built a

complete software system from scratch.

This overemphasis on theory creates what industry folks call

“paper programmers” - graduates who can talk intelligently

about algorithms and computer science concepts, but freeze

up when asked to write production-ready code or design a

real-world application [8]. They might be able to analyze

sorting algorithms on paper, but wouldn’t know how to

optimize a slow database query in an actual web application.

They can explain how CPUs process instructions, but struggle

to design a system that scales to thousands of users.

3.1.3 Disjointed Course Relationships

One of the biggest problems in computer science education

today is how courses are taught as completely separate

subjects that don’t connect to each other. Schools tend to put

each topic in its own little box, never showing students how

everything fits together in the real world of software

development. Let me give you a perfect example of how this

plays out: Students will take a data structures and algorithms

class where they learn all about different sorting methods.

They can code up a bubble sort or quicksort no problem. But

then in their software engineering class, when they need to

actually use these algorithms in a real application, they have

no idea how to choose the right one or make it work

efficiently with their code [9]. It’s like learning all the parts of

a car engine but never seeing how they actually work together

to make the car move.

3.1.4 Inflexible Elective Structures

Computer science has grown into such a wide field with so

many different career paths - from keeping systems secure in

cybersecurity, to building smart machines with AI, to

programming tiny computers in embedded systems. You’d

think schools would offer lots of flexible course options to

match all these possibilities. But surprisingly, most computer

science programs still force students into a one-size-fits-all

approach when it comes to elective courses. Many computer

science programs are too inflexible when it comes to course

options [10]. This ‘one-size-fits-all’ model fails to account for

students’ different interests and career goals within the broad

field of computer science.”

3.2 Practical Training Deficiencies

3.2.1 Super Easy Lab Classes

A lot of lab tasks are way too simple. They’re just like doing

basic sorting drills or easy database searches. These don’t

really get students ready for the tough coding problems they’ll

face in the real world. After taking these lab classes, students

usually can’t deal with real - life jobs like finding and fixing

bugs or making programs run faster.

3.2.2 Poor Teamwork Between Schools and Businesses

Even though some schools team up with companies, most of

these partnerships don’t give students any useful experience.

When students do internships, they often just do simple stuff

like labeling data instead of real software development work.

3.2.3 Graduation Projects Not Useful in the Real World

Many graduation projects are more about theories, like

making algorithms better, rather than building things that can

actually be used. Sometimes, the topics are picked by

professors, which stops students from being creative.

3.2.4 Not Enough Experience with Open - Source and

Contests

Schools don’t make good use of open - source platforms (like

GitHub) or coding contests. This means students aren’t well -

prepared for how things work in the professional world.

3.3 Evaluation Mechanism Shortcomings

3.3.1 Overreliance on Exam Scores

Tests measure memorization better than actual coding ability.

Students might score well on paper but struggle with real

programming tasks.

3.3.2 Unclear Standards for Project Evaluation

Teachers often just check if code works, ignoring quality,

documentation, and teamwork. This teaches bad habits.

3.3.3 Lack of Ongoing Feedback

Students only get grades at the end, with no chance to improve

during projects. Many discover major problems too late.

47

Journal of Educational Research and Policies ISSN: 2006-1137Journal of Educational Research and Policies ISSN: 2006-1137

http://wwwwww..bbrryyaannhhoouusseeppuubb..ocrogm

 VoV lo ul mu eme 7 Issue 78 2025

3.3.4 Limited Industry Involvement

Companies rarely help assess students, so school standards

don’t match workplace needs. Schools teach theory while

employers want practical skills. The evaluation score for lab

class effectiveness shows a relatively stable trend over the

three - year period. In 2022, the score is around 45, in 2023 it

remains at approximately 50, and in 2024 it is still close to 50.

In conclusion, while there are some signs of improvement in

areas like project practicality and open - source exposure,

there are still major deficiencies in lab class effectiveness and

industry collaboration. These issues need to be addressed to

better prepare computer science students for the real - world

demands of the software development industry.

Figure 1: Trend Analysis of Key Issues in Computer Science

Education Assessment

4. The Construction of Three-Dimensional

Collaborative Training Model

4.1 Curriculum Restructuring Dimension

4.1.1 Keeping Courses Current

We work closely with industry experts each year to update our

courses. For example, our software engineering class has

become a practical workshop where students use real

developer tools like Docker and CI/CD systems. They don’t

just learn concepts - they apply them. We also invite tech

leaders to share insights on emerging fields like AI and

quantum computing.

4.1.2 Flexible Learning Paths

We’ve redesigned our program with three flexible study

options: First, core programming courses using modern

languages like Python and Go. Second, specialized AI, cloud

computing or cybersecurity tracks in later years. Third,

interdisciplinary programs that apply tech skills to fields like

healthcare and finance - including practical projects such as

developing blockchain solutions for medical records.

4.1.3 Learning by Doing

Our classes now focus on hands-on projects rather than just

lectures. Students work in teams to build real-world

applications - like creating ticket booking systems in database

courses. They learn practical skills like Rust programming for

operating systems. Every semester includes two-week

intensive coding sessions that replicate real workplace

environments.

4.1.4 Blended Learning Approach

Our program lets students count approved online courses and

industry certifications toward their degree requirements. You

can take Coursera classes or earn AWS/ Azure cloud

credentials while completing your regular coursework -

giving you both academic credit and valuable professional

qualifications.

4.2 Practical Platform Dimension

4.2.1 Tiered Practical Training System

A three-phase progression:

Year 1: Algorithm training via Online Judge (200-problem

benchmark).

Year 2: Cross-semester projects (e.g., building a distributed

file system).

Year 3: Real-world development tasks in corporate projects

(≥500 Git commits required).

4.2.2 Hybrid Lab Environments

Invest in:

Cloud-Native Labs: Enterprise-grade setups (K8s clusters,

Service Mesh).

Cybersecurity Ranges: Simulated DDoS/APT defense

scenarios.

Digital Twin Factories: Industrial IoT platforms for smart

manufacturing projects.

4.2.3 Industry-Academia Collaboration

Implement:

Dual Mentorship: Corporate engineers co-supervise theses

(e.g., Ant Group experts guiding risk-control algorithms).

Project Bank: Real industry tasks (e.g., logistics route

optimization) open for student bidding.

Corporate Credits: Open-source contributions (e.g., Huawei

OpenEuler) count as elective credits.

4.2.4 Competition-Incubation Pipeline

Link competitions (ACM/CTF training as mandatory) with

startup support:

Seed funding for viable class projects (e.g., student-built

low-code platforms).

Mentorship from tech parks to commercialize innovations.

48

Journal of Educational Research and Policies ISSN: 2006-1137Journal of Educational Research and Policies ISSN: 2006-1137

http://wwwwww..bbrryyaannhhoouusseeppuubb..ocrogm

 VoV lo ul mu eme 7 Issue 78 2025

In 2018, the “Course Currentness” has the highest

implementation score among the four metrics, while “Blended

Learning Adoption” has the lowest.

As the years progress, the “Hands - on Project Ratio” and

“Flexible Learning Paths” start to catch up. By 2023, all four

metrics are in the higher range (above 75% for most),

indicating a comprehensive development in curriculum

restructuring. For example, in 2023, the differences between

the scores of these metrics are relatively small compared to

2018.

As shown in Figure 2, all four metrics (Course Currentness,

Flexible Learning Paths, Hands - on Project Ratio, Blended

Learning Adoption) demonstrate an upward trend from 2018

to 2023, with Course Currentness having the highest score

throughout the period and Blended Learning Adoption

starting from the lowest but also showing significant growth.

Figure 2: Curriculum Restructuring Progress Metrics (2018 -

2023)

4.3 Evaluation System Dimension

4.3.1 Multi-Dimensional Competency Profiles

We implement blockchain-secured digital portfolios that

continuously track student development across key areas. For

technical coding skills, we record competitive programming

performance on platforms like LeetCode and Kaggle.

Engineering capabilities are measured through real GitHub

project contributions, including repository stars and how often

students improve existing code. Business understanding gets

evaluated based on their impact in actual corporate projects

during internships. Soft skills assessment comes from

comprehensive 360-degree reviews by peers, instructors, and

industry mentors, giving a complete picture of each student’s

professional growth.

4.3.2 Continuous Assessment Tools

For team projects, our tracking system connects directly to

Jenkins (a tool used by most tech companies) to give students

and teachers real-time updates. You can see at a glance

whether recent code changes broke anything, how much of the

project has been properly tested, and which team members

might need extra help. It’s like having a fitness tracker for

software projects - showing progress and spotting problems

early. We’ve also created AI helpers that review technical

writing - the documentation that explains how code works.

These smart assistants check for missing information,

confusing explanations, or inconsistent formatting. They help

students develop the communication skills that are just as

important as coding ability in real jobs. The AI doesn’t

replace human teachers - it gives them more time to focus on

higher-level feedback by handling routine checks.

4.3.3 Industry Certification Integration

Our “1+X” certification program makes sure that when

students graduate, they’re all set to start working right away,

with both key tech qualifications and special skills. All

students majoring in computer science have to get AWS cloud

computing and CISP cybersecurity certifications. These

certifications are like the must-have “driver’s licenses” for a

career in tech, and now they’re required to graduate. After that,

students can go for more targeted micro - certifications in

fields like AI (such as Google’s TensorFlow) to show off their

specific know - how. By teaming up with tech giants like

Huawei’s ICT Academy, we give students access to up - to -

date certification programs that use the very same

technologies that employers are using right now. This mix of

required basic knowledge and optional specialized skills gives

our graduates a big edge in the job market.

4.3.4 Dynamic Feedback Mechanism

We carefully track how our graduates perform in their jobs

after leaving school. When we notice many alumni struggling

with certain skills - like writing smart contracts for blockchain

applications - we know exactly which areas of our curriculum

need strengthening. At the same time, we monitor thousands

of tech job postings across different industries. This helps us

spot new trends as they emerge, like when we noticed

companies suddenly looking for Rust programmers in 2024.

But we don’t just look outward - we also pay close attention to

what current students tell us. When particular courses

consistently get poor ratings (less than 3 stars) from multiple

groups of students, our system flags them for immediate

review and improvement. This might mean updating course

materials, bringing in new instructors with relevant industry

experience, or sometimes completely redesigning how the

subject is taught. What makes this approach special is how all

these different sources of information work together. It’s not

just one professor deciding what to teach based on their

personal experience. Instead, we combine real-world

employment data, industry hiring trends, and direct student

feedback to make informed decisions about our curriculum.

This ensures we’re always teaching the most relevant, useful

skills that will actually help students succeed in their careers.

5. Conclusion

Our research makes one thing crystal clear - there’s a huge

disconnect between what students learn in computer science

programs and what they actually need to know to succeed in

tech jobs today. The good news? Our “Three-Dimensional”

training approach - which focuses on relevant coursework,

real-world practice, and meaningful skills assessment - is

showing great results in closing this gap. At schools testing

this model, we’re seeing students graduate with skills

employers actually want, companies hiring graduates who can

contribute right away, and universities keeping pace with the

49

Journal of Educational Research and Policies ISSN: 2006-1137Journal of Educational Research and Policies ISSN: 2006-1137

http://wwwwww..bbrryyaannhhoouusseeppuubb..ocrogm

 VoV lo ul mu eme 7 Issue 78 2025

lightning-fast changes in technology.

Acknowledgement

Henan Province Zhumadian City 2024 Soft Science Project,

Project Name: Research on a Training Model to Enhance the

Enterprise Innovation and Practice Ability of Computer

Science Students in Colleges and Universities.

References

[1] Wang X. Research on the Construction of Collaborative

Education System for Innovation and Entrepreneurship

of Computer Science College Students Under the

Background of Internet Plus [J]. Frontiers in Education

Technology, 2025,8(1):

[2] Shuai Y. Exploration of the Maturity Evaluation of

College Students’ Innovation and Entrepreneurship

Projects Based on Computer Database Technology [J].

Journal of Electronic Research and Application, 2024,

8(6): 89-95.

[3] Liu X. Research on the Cultivation Mode and Path of

Innovation and Entrepreneurship Ability of Computer

and Electronic Engineering College Students under the

Background of Artificial Intelligence [C]//Sam Houston

State University. Proceedings of the 5th International

Conference on Educational Innovation and

Philosophical Inquiries (part2). Department of

Mechanical and Electrical Engineering, Shenmu

Vocational and Technical College, 2024: 288-293.

[4] Jun M. RESEARCH ON THE INFLUENCE OF

COMPUTER SOFTWARE TALENT TRAINING

MODEL INNOVATION ON ALLEVIATING

COLLEGE STUDENTS’ ANXIETY [J]. Psychiatria

Danubina, 2022, 34(S1):528-529.

[5] Dian Z, Meng H, Pan L. The Research of Improving the

Practical Innovation Ability of Computer Major

Students with the Discipline Competition [J].

International Journal of Modern Education Forum, 2016,

5(0): 42-45.

[6] Yao D, Mi C, Zhang W.A Teaching Reform and Practice

to Improve Student’s Ability of Practice and Innovation

in Computer Major [C]//School of Computer Science

and Engineering, Huaihua University Huaihua, China;

School of Computer Science and Engineering, Huaihua

University Huaihua, China; School of Computer Science

and Engineering, Huaihua University Huaihua, China,

2020: 123-124.

[7] Zhiying H, Hong Z. The Research and Practice of

Improving College Students’ Computer Innovation

Ability under TPACK Framework [C]/, 2020: 45-47.

[8] Zhao C, Wu S, Wu D. Exploring the cultivation path of

university students’ scientific research and innovation

ability under the patent guidance [J]. Advances in Social

Behavior Research, 2025, 16(2). 14-15.

[9] Liu X, Zhou S. Research on the Cultivation of Middle

School Students’ Spirit of Exploration and Innovation

Ability in the Context of the New Curriculum [J].

Springer, Singapore, 2025. 45-47.

[10] Carabregu-Vokshi M, Ogruk-Maz G, Yildirim S, et al.

21st century digital skills of higher education students

during Covid-19—is it possible to enhance digital skills

of higher education students through E-Learning? [J].

Education and Information Technologies, 2024, 29(1):

35-36.

50

