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Abstract: Osteochondral Lesion of the Talus (OLT) is a common cause of ankle pain and its conservative treatment has limitations. 
However, there are few studies on pulsed electromagnetic fields (PEMFs) in the treatment of OLT. This study mainly explored the 

application feasibility of PEMFs in OLT.PEMFs can play a role through a variety of mechanisms such as promoting cell metabolism and 

regulating gene and protein expression. This study explored the potential of PEMFs in the treatment of OLT by combining the 
pathological mechanism of OLT and the mechanism of PEMFs through theoretical discussion. The findings suggest that PEMFs can 

accelerate initial healing such as promoting vascular remodeling, reduce inflammation, relieve pain, and prevent further cartilage 

damage. This study provides new insights into noninvasive treatment options for OLT.  
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1. Introduction 
 

Osteochondral Lesions of the Talus (OLT) often cause 

persistent ankle pain, especially in young and middle-aged 

people, showing the gender characteristics of more men and 

less women, often due to various traumas, Results in cartilage 

and subchondral bone damage of talus trochlea [1]. Cartilage 

injuries occur mostly in the anterolateral and posterolateral 

areas of the talus trochlear, which will destroy the stability of 

the ankle joint and lead to changes in the pressure of 

subchondral bone, which will evolve into subchondral bone 

necrosis, cyst formation and even bone defects, and 

eventually lead to bone joints [2,3]. Modern medical 

treatment for asymptomatic or mild early OLT, often by 

means of magnetic resonance imaging (MRI) to distinguish 

Hepple I to II lesions [4,5]. For this, treatment mainly includes 

behavioral guidance (e.g., attention to rest), oral non-steroidal 

anti-inflammatory drugs, extracorporeal shock wave, etc. 

[6-8]. However, these treatment methods have limitations to 

some extent, for example, behavioral intervention alone may 

not be effective for some cartilage injuries, oral nsaids may 

have side effects, and extracorporeal shock wave therapy may 

not achieve ideal results for all patients with talar cartilage 

[9,10]. 

 

Pulsed electromagnetic fields (PEMFs), as a non-invasive, 

safe and effective treatment method, have been widely used in 

various fields of orthopedics. Studies have shown that in 

terms of fracture healing, 85.6% of patients had significantly 

shorter fracture healing time after receiving PEMFs treatment 

[11]. A large number of studies have shown that PEMFs have 

achieved positive effects on fracture healing problems, such 

as osteonecrosis of the femoral head, osteomyelitis, 

osteoporosis, osteoarthritis, and postoperative rehabilitation 

of fractures [12,13]. With the deepening of the research on the 

effect of PEMFs on cartilage, and the effect of PEMFs on 

cartilage has been widely studied and recognized. Studies 

have found that PEMFs can stimulate the proliferation and 

differentiation of chondrocytes and promote the synthesis of 

extracellular matrix of chondrocytes [14,15]. However, there 

are relatively few studies on the use of PEMFs in the 

treatment of OLT. We discussed the pathological mechanism 

of OLT combined with the mechanism of PEMFs to explore 

whether PEMFs can also be used in the treatment of OTC 

alone or in the adjuvant treatment of OTC. 

 

2. Mechanisms for the Study of Cartilage 

Damage in the Talus 
 

2.1 Mechanical Injury 

 

2.1.1 Effects on chondrocytes 

 

Mechanical injury can affect the biosynthesis and metabolic 

activities of talar chondrocytes and cartilage degradation. 

Excessive mechanical load or injury may lead to increased 

intracellular stress, which in turn destroys the cytoskeleton 

and extracellular matrix, resulting in decreased biosynthetic 

activity of chondrocytes [16]. Furthermore, mechanical 

damage can also cause the destruction of cartilage matrix, 

including the degradation of proteoglycan and collagen, 

which in turn causes the stress response of chondrocytes and 

activates the expression of degradation enzymes such as 

matrix metalloproteinases (MMPs), leading to the degradation 

of macromolecules in cartilage matrix. It has been found that 

endothelial growth factor (VEGF), which may play a key role 

in the repair process after cartilage injury, may also 

exacerbate matrix degradation [17]. In addition, chondrocyte 

death can further aggravate matrix degradation and cartilage 

degradation [18-20]. Moreover, mechanical damage can 

directly lead to inflammation to produce reactive oxygen 
species (ROS), which can cause oxidative damage to cell 

membrane and DNA, leading to cell death, and may activate 

apoptotic pathways such as caspases in cells, leading to 

programmed cell death and apoptosis [20,21]. Some studies 

have shown that the gene expression of chondrocytes changes 

after mechanical injury, that is, mechanical injury causes 

changes in the gene expression of pro-inflammatory genes 

such as MMPs and ADAMTS and repair related genes such as 

COL2A1 and ACAN in articular cartilage. After injury, HIF-1, 

VEGF and other signaling pathways are activated, which in 

turn affect angiogenesis and inflammatory response [22,23]. 

 

2.1.2 Effects on articular surfaces 
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Osteochondral injury of the talus can significantly affect joint 

function, may lead to long-term complications such as 

osteoarthritis, and may aggravate the condition over time. 

Mechanical injury of the talus affects the relevant structures 

of the joint. Studies have shown that the cartilage model is 

damaged immediately after mechanical injury, and the surface 

layer of the cartilage is more affected than the deep area [24]. 

Singh [25] et al. found that the level of glycosaminoglycan in 

cartilage affected for a long time was low and the water 

content was high, which further proved that the joint surface 

structure changed after talar cartilage injury. Osteochondral 

injury of the talus destroys the normal biomechanics of the 

ankle joint, resulting in abnormal stress distribution of the 

ankle joint during movement and aggravating cartilage 

damage [26]. For example, when an athlete suffers a 

mechanical injury to the ankle joint, if the injury area is large, 

the instability of the joint will be obviously felt when 

performing actions such as emergency stop and steering, 

because the injury disrupts the normal structure and 

mechanical balance of the joint [27]. Studies have shown that 

the stability of the ankle joint will change significantly when 

the injury area exceeds 6mm2 in sports situations [28]. In 

addition, mechanical damage destroys the structure of 

collagen and proteoglycan in cartilage, reduces the 

compression and shear stiffness of cartilage, and makes 

cartilage more prone to deformation when subjected to 

physiological load, which affects the normal buffering and 

supporting function of the talar articular surface and increases 

the risk of secondary osteoarthritis [29,30]. 

 

2.1.3 Vascular issues 

 

The talus does not have independent nutrient vessels, which 

means that its nutrient supply is relatively limited and depends 

on the diffusion of surrounding tissues, so the healing after 

injury is slow [31]. Lutz [32] et al. found that 51% of ankle 

injuries had vascular problems in their cartilage fractures. 

Studies have shown that after articular cartilage injury, its 

blood vessels will be invaded, leading to cartilage 

calcification and loss of joint function [33]. Bruns [34] et al. 

noted that most cartilage injuries are trauma related, while the 

etiology of pure osteochondritis is still under discussion and 

may be related to osteonecrosis due to vascular disorders, 

highlighting the potential influence of vascular factors in 

cartilage injuries. At present, in view of the vascular problems 

of osteochondral injury of the talus, some studies are 

exploring methods to improve local blood circulation to 

promote injury repair, such as vascular interventional therapy, 

but no clear and widely applicable results have been achieved 

[11]. 

 

2.1.4 Other factors 

 

Genetic factors play an important role in osteochondral 

damage of the talus. Studies have shown that while trauma is a 

common cause, genetic factors and genetic predispositions are 

also key factors influencing the development and progression 

of these injuries. Szwedowski [35] et al. identified genetic 

factors as key determinants of cartilage damage, profoundly 

affecting biochemical pathways critical for cartilage structure 

and stability. Boukhemis [36] et al. observed identical lesions 

in twins, suggesting a genetic predisposition to OLT. 

Although trauma often results in osteochondral lesions of the 

talus, genetic predisposition can exacerbate the susceptibility 

to such injuries, potentially leading to severe complications 

such as avascular necrosis. In addition to genetic factors, 

osteochondral lesions of the talus are affected by certain 

hormones, especially sex hormones and glucocorticoids. 

Estrogen, progesterone, and androgens have been shown to 

have significant effects on cartilage quality and bone density 

[37]. Notably, the deficiency of these hormones (most 

pronounced during menopause) is associated with an 

increased incidence of osteoarthritis (OA) [37]. Further 

studies have shown that elevated glucocorticoid signaling in 

osteoblasts is associated with age-related cartilage damage 

[38], suggesting that interventions interfering with this 

pathway can alleviate OA progression, illustrating a 

detrimental role for glucocorticoids in maintaining cartilage 

health. However, there are still many challenges on how to 

regulate these hormones to improve talar cartilage damage. 

For example, the role of sex hormones in the differentiation of 

articular cartilage cannot be improved by the combination of 

glucocorticoid, but may accelerate the hypertrophy of 

chondrocytes [39]. How to effectively regulate these 

hormones to improve specific types of tissue damage is also 

one of the directions that future research needs to focus on. 

 

3. The Mechanism of Action of Pulsed 

Electromagnetic Fields (PEMFs) in 

Orthopedics. 
 

3.1 Promotes Cartilage Healing 

 

3.1.1 cellular metabolism 

 

PEMFs may affect bone healing by regulating cell 

metabolism and function. Within cells, studies have shown 

that it promotes the proliferation and differentiation of 

osteoblasts by up-regulating key genes such as IGF-1 

(insulin-like growth factor-1, which plays an important role in 

promoting cell proliferation, differentiation and survival) and 

Runx2 (which is a key transcription factor for osteoblast 

differentiation), thereby triggering a surge in intracellular 

calcium transient events [40]. Moreover, PEMFs have been 

shown to catalyze mitochondrial efficiency and promote ATP 

production, thereby enhancing cellular activities essential for 

bone repair and regeneration [41]. Outside the cell, it has been 

found that PEMFs stimulation of synthesis of extracellular 

matrix components enhances structural integrity within the 

framework of bone and cartilage [42]. In human 

adipose-derived stem cells (hASCs), PEMFs triggered 

enhanced cell proliferation accompanied by a marked 

transition to osteogenic differentiation [15]. And Lei [43] et al. 
found that PEMFs hindered osteoclast maturation, reduced 

excessive bone resorption and promoted coordinated bone 

turnover rate by inhibiting Akt/mTOR pathway. In addition, 

Daou [44] et al. found that PEMFs stimulation and activation 

of the immune regulatory cascade in hMSC can promote 

angiogenesis and osteogenesis, while accelerating the 

metabolic rate of chondrocytes, thereby accelerating the 

recovery and regeneration ability of damaged cartilage 

structures. 

 

3.1.2 Genes and Protein Expression 

 

PEMFs may affect bone healing through gene and protein 
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expression. Enhancement of cell proliferation, migration, 

differentiation, and angiogenesis by up-regulating the 

transcription of osteogenic markers, including Runx2, ALPL, 

COL1A1, and BSP, along with stimulation of genes encoding 

growth factors, such as TGF - β and VEGF, fosters a 

supportive microenvironment [45,46]. Specifically, PEMFs 

are able to promote the activation of intracellular signaling 

pathways such as the mitogen-activated protein kinase 

(MAPK) and phosphatidylinositol 3-kinase-protein kinase B 

(PI3K-Akt) pathways, which are essential for the regulation 

of gene expression [47,48]. PEMFs play a key role in the 

regulation of genes associated with apoptosis and cell survival, 

particularly affecting members of the Bcl - 2 family and 

cysteoaspartic enzymes [15,49,50], which help maintain the 

proper cell survival and apoptosis balance and are essential 

for bone tissue homeostasis and repair. PEMF treatment 

significantly altered the intracellular calcium ion 

concentration ([Ca2+]i), which acts as a key second 

messenger in various cellular processes and is an 

indispensable messenger in bone metabolism [51]. 

Importantly, PEMF promotes mechanical cues sensed by 

osteocytes, mainly osteoblasts, to convert these signals into 

biochemical responses through mechanical transduction, a 

process that profoundly affects gene expression and protein 

synthesis related to bone healing [52]. 

 

3.2 Anti-inflammatory Effect 

 

3.2.1 anti-inflammatory action 

 

As a non-invasive treatment, PEMFs have demonstrated their 

potential for controlling acute and chronic inflammatory 

responses while effectively relieving pain, swelling and 

stiffness, and accelerating the healing process in a wide range 

of inflammatory conditions, from musculoskeletal to 

autoimmune spectrum [53,54]. PEMFs therapy alleviated the 

inflammatory response in a mouse model of rheumatoid 

arthritis (RA) by inhibiting the synthesis and release of 

inflammatory mediators such as interleukin-6 (IL-6), tumor 

necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). These 

inflammatory mediators are key cytokines in the 

inflammatory process, and their overproduction can lead to an 

overactive inflammatory response and cause tissue damage. 

Some studies have found that after PEMFs treatment, the 

content of IL-6 in mice decreased by 5% and the content of 

TNF-α decreased by 3% [53]. In addition, PEMFs up-regulate 

the expression of adenosine receptors (especially A2A and A3 

subtypes) and down-regulate the levels of most 

pro-inflammatory cytokines, demonstrating its powerful 

anti-inflammatory effect [54]. Moreover, PEMFs create a 

microenvironment conducive to bone repair by regulating 

NF-κB activity and indirectly reduce inflammation [55,56]. 

PEMFs also effectively contain the secondary injury caused 

by excessive immune response by limiting the migration and 

infiltration of T cells into the inflammatory area, which is 

particularly important for preventing the spread of 

inflammation [57]. 

 

3.2.2 Antioxidant, cytoprotective and vascular conditions 

 

PEMFs mainly play a role in anti-oxidation, cell protection 

and vascular conditions. PEMFs therapy can activate 

mitochondrial function, enhance energy production efficiency 

of cells, inhibit excessive generation of reactive oxygen 

species (ROS) in hypoxic environment, and thus reduce 

inflammation [58,59]. At the same time, PEMFs stimulate the 

synthesis of heat shock proteins (HSP), especially by 

activating the p38 kinase pathway, increasing the expression 

of HSP70, strengthening the defense line of cells against 

oxidative damage and avoiding abnormal protein aggregation 

[60,61]. In addition, PEMFs have a regulatory effect on nitric 

oxide (NO) level, which can promote vasodilation and blood 

flow, and have an auxiliary effect on the resolution of 

inflammation and wound healing process [62]. This improves 

microcirculation, increases tissue oxygen saturation, and 

enhances resistance to oxidative stress [56]. 

 

4. Application of PEMFs in OLTs 
 

4.1 Acceleration of the Initial Healing Process: Role of 

Rapid Revascularization and Cellular Activity 

 

The inherent blood supply of talus cartilage is insufficient, 

and there is a high complication rate of vascular injury [32-34]. 

Meanwhile, the contradictory dual roles of VEGF in 

angiogenesis and matrix degradation also aggravate this 

problem [17]. This highlights the critical importance of 

addressing vascular factors in therapeutic interventions to 

optimize repair and mitigate long-term degeneration. PEMFs 

can enhance angiogenesis and tissue perfusion by 

up-regulating vascular endothelial growth factor (VEGF), 

fibroblast growth factor 2 (FGF-2) and activating the 

PI3K-Akt-eNOS pathway [62-64], which can accelerate the 

healing process. The treatment of PEMFs for OLT opens up 

new possibilities. Some studies have shown that a study on 

acute limb ischemia model and brain microvessels in diabetic 

rats showed that PEMFs significantly increased the number 

and diameter of blood vessels and promoted angiogenesis [65]. 

In addition, PEMFs can up-regulate the expression of 

osteogenesis-related genes, promote the proliferation and 

differentiation of osteoblasts, and stimulate the activity and 

proliferation of chondrocytes, thereby accelerating the 

regeneration of cartilage tissue. These effects are particularly 

prominent under specific PEMFs frequency and intensity, 

which provides strong support for osteochondral regeneration 

of the talus [66-68]. For example, in a rabbit experiment 

treated with PEMFs at a specific frequency, researchers 

observed a significant increase in chondrocyte proliferation 

and enhanced cartilage matrix synthesis [69]. Together, these 

findings reveal the strong potential of PEMFs in promoting 

healing of talar cartilage injuries, especially in improving 

vascular conditions and enhancing cell activity. 

 

4.2 Reduces Inflammation and Promotes Tissue Repair 

 

Another important advantage of PEMFs in the treatment of 

osteochondral lesions of the talus is their anti-inflammatory 

and promoting tissue repair effects. PEMFs can reduce local 

inflammatory responses by regulating the secretion of 

inflammatory mediators, such as reducing the levels of 

interleukin-6 (IL-6) and tumor necrosis factor α(TNF-α) 

[54,59]. In addition, PEMFs can also enhance the antioxidant 

capacity and resistance of cells by activating the synthesis of 

heat shock proteins (HSPs) [60,61]. In an experiment in rats, 

researchers found that PEMFs significantly reduced swelling 

and inflammation at the injured site and accelerated the 
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process of cartilage repair [70]. These findings again validate 

the utility of PEMFs in reducing inflammation and promoting 

tissue repair, making them a viable tool for the treatment of 

osteochondral injury in the talus. 

 

4.3 Pain Management and Functional Recovery 

 

PEMFs also showed advantages in pain management and 

functional recovery. By stimulating nerve endings, PEMFs 

can reduce the sensitivity of pain receptors, thereby achieving 

analgesic effects [71]. In addition, PEMFs can also improve 

blood circulation, increase oxygen and nutrient supply to the 

injured site, and promote its faster functional recovery [72]. In 

clinical practice, many patients experience pain relief and 

improved motor function after PEMFs treatment [73,74]. 

These effects not only improve the quality of life of patients, 

but also shorten the recovery time, making PEMFs an 

important part of the treatment of osteochondral lesions of the 

talus. 

 

5. Conclusion 
 

In summary, this study provided a detailed review of the 

underlying mechanisms of osteochondral lesions of the talus 

and an in-depth analysis of the operational mechanisms of 

PEMFs in the field of orthopedics, with a focus on the 

potential of PEMFs for the treatment of osteochondral lesions 

of the talus. However, there are still many unanswered 

questions regarding the application of PEMFs in the treatment 

of talar cartilage injuries, such as determining a personalized 

treatment plan and evaluating the synergistic effect with 

existing treatments. In the future, with the in-depth 

exploration of the mechanism of action of PEMFs and the 

development of technical innovation, PEMFs will be more 

applied in the field of talar cartilage injury. 
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