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Abstract: Neurodegenerative diseases (AD, PD, HD, ALS) share the common pathological endpoint of “irreversible neuronal loss,” with 

apoptosis serving as the “terminal common pathway” driving disease progression. Alzheimer’s disease (AD) is a chronic, progressive 

neurodegenerative disorder characterized primarily by the gradual deterioration of cognitive and memory functions. Its pathological 

hallmarks include neurofibrillary tangles formed by aggregates of hyperphosphorylated microtubule-associated protein (Tau) and 

amyloid plaques resulting from β-amyloid protein aggregation. The exact pathogenesis of AD remains incompletely understood, and there 

are currently no effective disease-modifying treatments or curative approaches available in clinical practice. In recent years, the incidence 

of AD has shown an increasing trend, significantly impacting public health and quality of life. Therefore, identifying effective therapeutic 

agents and compounds for AD is of paramount importance. Neuronal loss in Alzheimer’s disease is not merely a result of Aβ or Tau “toxic 

proteins” directly killing cells. Rather, it is the consequence of “programmed cellular suicide” induced by the persistent activation of 

apoptotic signaling networks by these agents. Modern medical research has revealed that intervening in apoptosis plays a crucial role in 

the pathophysiological development of AD. Furthermore, traditional Chinese medicine (TCM) has a long history of application in treating 

neurodegenerative diseases, offering advantages such as fewer adverse effects and the characteristic of multi-target, multi-link, and 

multi-pathway intervention. Consequently, based on reviewing and analyzing the latest domestic and international research, this article 

elaborates on the role of apoptosis in the onset and progression of AD and summarizes recent advances in TCM interventions targeting 

apoptotic pathways for AD treatment. The aim is to provide references and a foundation for developing clinical drugs to prevent and treat 

AD and to offer a broader perspective on the potential of TCM in managing this condition. 
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1. Introduction 
 

Alzheimer’s disease (AD) is the most common type of senile 

dementia, characterized by an irreversible, progressive 

degeneration of the central nervous system. Its primary 

clinical manifestations are cognitive impairments in areas 

such as memory, comprehension, calculation, visuospatial 

function, and language. As the disease advances, it ultimately 

leads to death [1-2]. The exact pathological mechanisms of 

AD remain incompletely understood. Current research 

indicates that the aggregation of β-amyloid (Aβ), 

hyperphosphorylation of tau protein, neuronal damage or loss, 

and neuroinflammation play significant roles in the 

pathogenesis and progression of the disease [3-5]. Apoptosis, 

also known as programmed cell death, is an active, genetically 

controlled process of cell death. It is a crucial mechanism for 

maintaining homeostasis and eliminating damaged, aged, or 

unnecessary cells in multicellular organisms. Unlike necrosis, 

apoptosis does not trigger an inflammatory response. During 

apoptosis, cells undergo a series of characteristic changes, 

including membrane blebbing, chromatin condensation, DNA 

fragmentation, and segmentation into apoptotic bodies, which 

are subsequently cleared by neighboring cells or phagocytes. 

Apoptosis is regulated by multiple signaling pathways, 

primarily the extrinsic death receptor pathway and the 

intrinsic mitochondrial pathway. Dysregulated apoptosis is 

implicated in various diseases, such as cancer, 

neurodegenerative disorders, and autoimmune diseases. 

Modern medical research has revealed that apoptotic 

signaling pathways play a pivotal role in the pathogenesis of 

AD. Abnormal activation of apoptosis intertwines with other 

pathological mechanisms—such as Aβdeposition, Tau 

pathology, and neuroinflammation—collectively driving 

neuronal death and cognitive decline [6]. Research progress in 

Western medicine for treating AD has been slow, with clinical 

outcomes often unsatisfactory. In contrast, studies on 

traditional Chinese medicine (TCM) for AD have deepened, 

revealing its characteristics of multi-link, multi-pathway, and 

multi-target holistic regulation. Notably, TCM has been found 

to treat AD and potentially prevent its recurrence by 

modulating the initiation and progression of apoptosis, 

offering novel therapeutic strategies and insights for AD 

prevention and treatment. Based on this, this article details the 

mechanisms by which intervention in apoptosis influences the 

pathophysiological processes after AD onset and reviews 

research progress on TCM regulation of AD through 

apoptosis modulation. It aims to provide a reference for the 

future application of these insights in the clinical diagnosis 

and treatment of AD.  

 

2. Current Status of AD Treatment 
 

2.1 Recent Advances in AD Drug Development 

 

Current treatment options for AD include four approved 

symptomatic drugs: donepezil, rivastigmine, galantamine, 

and memantine. In 2023, the monoclonal antibody 

Lecanemab (brand name Leqembi), which targets Aβ plaques, 

was approved. While it has shown efficacy in reducing 

amyloid deposition in early AD, it carries risks such as 

amyloid-related imaging abnormalities (ARIA) and infusion 

reactions. Emerging immunotherapies, including donanemab 

and gantenerumab, also aim to clear Aβ plaques and delay 

Tau pathology; however, their long-term cognitive benefits 

are still under evaluation [7]. Innovative small-molecule 

drugs, such as F-SLCOOH, have demonstrated dual value in 

preclinical studies: functioning as a tracer for Aβ aggregates 

while also exerting therapeutic effects by activating 

autophagy pathways. The fluorescent probe F-SLOH has been 

shown in 5XFAD and 3xTg-AD mouse models to inhibit Aβ 
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aggregation, reduce levels of Aβ plaques/Aβ oligomers and 

Tau aggregates, enhance the clearance of APP/Tau 

metabolites via the autophagic-lysosomal pathway (ALP), 

mitigate neuroinflammation, and improve synaptic function 

and cognitive abilities [8]. Treatment strategies targeting Tau 

protein include Tau aggregation inhibitors and Tau vaccines. 

Neuroprotective agents, such as neurotrophic factors and 

BACE inhibitors, provide synergistic therapeutic effects by 

enhancing neuronal resilience and maintaining synaptic 

function [9-10]. Celastrol promotes autophagy-lysosome 

biogenesis by activating TFEB, facilitates TFEB nuclear 

translocation by inhibiting mTORC1, significantly reduces 

phosphorylated Tau aggregates in the brains of P301S Tau 

and 3xTg-AD mice, and effectively decreases phosphorylated 

Tau aggregation while improving cognitive function in AD 

models. This offers new insights for the treatment of 

Tauopathies [11]. APP overexpression promotes its binding to 

the Fe65 protein via the PTB2 domain, triggering Aβ 

secretion. Therefore, targeting and blocking the APP-Fe65 

interaction has emerged as a novel therapeutic strategy. 

Engineered exosomes loaded with the autophagy inducer 

corynoxine B can specifically target APP-expressing cells and 

significantly improve cognitive function in AD mice [12]. 

Recent studies have found that caudatin, derived from 

Cynanchum otophyllum, can bind to the PPARα receptor, 

upregulate ALP expression to promote the clearance of Aβ 

and phosphorylated Tau, and improve cognitive behavior in 

AD models [13].  

 

2.2 Emerging Trends in AD Treatment 

 

Despite the significant unmet clinical needs in AD treatment, 

the number of drugs undergoing clinical trials for the disease 

remains limited. Between 2002 and 2012, only 244 AD 

therapeutic drugs were registered for clinical trials on 

ClinicalTrials. gov, with only memantine ultimately receiving 

approval—a success rate as low as 0.4% [14]. Even drugs 

developed based on the Aβ hypothesis, targeting points such 

as BACE1 inhibitors, anti-Aβ antibodies, RAGE receptors, 

PPARs, and 5-HT6 receptors, have largely failed in Phase III 

trials. β-secretase, a key enzyme in the amyloidogenic 

processing of APP, was once considered a promising target. 

However, three major BACE inhibitors have all failed: 

Verubecestat significantly reduced Aβ levels in blood, 

cerebrospinal fluid (CSF), and brain tissue but failed to slow 

symptom progression in the EPOCH trial for 

mild-to-moderate AD. The APECS trial for prodromal AD 

was terminated early due to a lack of efficacy, with the 40 mg 

dose group even accelerating cognitive decline and increasing 

adverse events [15]. Lanabecestat showed no efficacy in the 

AMARANTH (early AD) and DAYBREAK-ALZ (mild AD) 

trials and was associated with side effects such as psychiatric 

symptoms and weight loss [16]. Atabecestat, while lowering 

CSF Aβ levels, was discontinued due to hepatotoxicity, 

suggesting that BACE1 may not be an ideal target [17]. The 

anti-Aβ monoclonal antibody Solanezumab initially showed 

an increase in free Aβ levels in CSF, but the Phase III 

EXPEDITION series of trials failed to demonstrate cognitive 

improvement in patients with mild-to-moderate AD. 

Azeliragon, a RAGE inhibitor, showed cognitive 

improvement in Phase II trials for mild AD, but the Phase III 

STEADFAST trial was terminated due to ineffectiveness 

[18-19]. The diabetes drug pioglitazone, repurposed due to its 

PPAR-γ agonist activity, showed improved cerebral blood 

flow and cognition in small-scale studies but did not meet its 

primary endpoints in the Phase III TOMORROW trial [20]. 

The 5-HT6 receptor antagonist Idalopirdine showed limited 

efficacy as a monotherapy in Phase II trials but exhibited 

synergistic effects when combined with donepezil. However, 

the Phase III STAR trials (combining Idalopirdine with 

donepezil, rivastigmine, or galantamine) failed to demonstrate 

cognitive benefits from the combination therapy [21]. 

Similarly, Intepirdine, another drug in the same class, was 

discontinued after Phase III trials showed no significant 

efficacy, despite promising Phase II results [22-23]. Another 

current direction in AD research involves drug repurposing, 

focusing on drugs already approved by the U. S. Food and 

Drug Administration (FDA) for other indications. Drug 

repurposing offers a faster and more cost-effective 

development pathway for AD treatments but still faces 

significant challenges. The complexity and heterogeneity of 

AD substantially increase the difficulty of developing 

effective drugs. Although repurposed drugs come with 

established safety profiles, they may still cause unforeseen 

adverse effects, requiring additional clinical evaluation [24]. 

Furthermore, the complexity of intellectual property 

acquisition also hinders the redevelopment of existing drugs. 

Nevertheless, with advances in computational methods and a 

deeper understanding of disease pathology, drug repurposing 

has become a highly promising research strategy in the AD 

field.  

 

3. Relationship Between Apoptotic Signaling 

Pathways and AD 
 

3.1 Inflammation-Mediated Apoptosis 

 

Studies have shown that neuroinflammation participates in the 

pathophysiological processes of AD by activating microglia 

and astrocytes [25]. The activation of microglia can 

counteract neuropathological damage induced by 

neuroinflammation in AD [26]. In the early stages of AD, 

even before the formation of senile plaques, activated 

microglia exert a neuroprotective effect by reducing Aβ 

deposition, effectively mitigating Tau protein 

hyperphosphorylation, and promoting the secretion of 

neurotrophic factors [27-28]. Research indicates that 

microglia play a dual role in the pathogenesis of AD. On one 

hand, a large number of activated microglia within senile 

plaques in patients exhibit phagocytic function, helping to 

clear Aβ aggregates through phagocytosis. Microglia also 

function through the expression of scavenger receptors, which 

are categorized into scavenger receptor class A (SR-A) and 

SR-B. These receptors aid in clearing apoptotic cells and 

protecting neurons, thereby slowing the progression of AD. 

On the other hand, excessive aggregation of Aβ and Tau 

proteins can activate the NLRP3 inflammasome, prompting 

microglia to shift from a resting state to a pro-inflammatory 

state. This leads to abnormal autophagy and the production of 

reactive oxygen species (ROS), further exacerbating the 

inflammatory response. Additionally, microglia cause 

neuronal damage and Aβ accumulation through Toll-like 

receptor (TLR) expression and abnormal activation of the 

complement system [29-30]. Consequently, sustained 

neuroinflammation leads to microglial activation, exacerbates 

Aβ deposition, and triggers neuronal damage. Aβ is a 
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significant neurotoxic factor that can activate microglia and 

initiate neuroinflammatory responses [31]. Other studies have 

shown that Tau oligomers and fibrils can provide sufficient 

stimulation to induce morphological changes in microglia and 

increase interleukin (IL) expression [32]. Different types of 

Aβ aggregates can activate microglia and release cytokines, 

leading to neuronal dysfunction and death [33]. 

Neuroinflammatory responses may play a driving role in the 

pathogenesis of AD, making anti-inflammatory therapy a 

potential treatment strategy. However, most large-scale 

clinical trials of anti-inflammatory drugs for AD have shown 

no significant improvement [34]. One randomized controlled 

clinical study indicated that non-steroidal anti-inflammatory 

drugs (NSAIDs) helped improve cognitive function in 

patients with mild-to-moderate AD carrying the ApoE4 allele 

[35]. Another study demonstrated that the use of NSAIDs 

before the onset of symptoms in AD patients had a protective 

effect on cognitive function, but their use after the onset of 

cognitive impairment was harmful [36].  

 

3.2 Interaction Between Aβ and Apoptotic Signaling 

Pathways 

 

Aβ deposition is one of the core pathological features of AD. 

Aβ can directly bind to neuronal surface receptors (such as 

RAGE), activate downstream signaling pathways, lead to 

intracellular calcium homeostasis imbalance and increased 

oxidative stress, thereby triggering apoptosis. Studies have 

found that in the hippocampus of APP/PS1 mice, knockout of 

the RAGE gene resulted in a 48% reduction in Cyto-c release, 

a 55% decrease in Caspase-3 activity, and a 42% reduction in 

neuronal loss rate [37]. Furthermore, traditional Chinese 

medicine formulas such as Huanglian Jiedu Tang (Coptis 

Detoxification Decoction) and the compound ginsenoside 

Rg1 have been demonstrated to simultaneously inhibit the 

RAGE-ROS axis and enhance Akt phosphorylation, 

achieving a “dual-axis therapeutic” effect [38]. Concurrently, 

Aβ can also indirectly promote apoptosis by inhibiting insulin 

signaling pathways (such as the PI3K-Akt pathway), thereby 

reducing the protective effects on neurons [39]. A published 

report indicates that both intracerebral insulin sensitizers 

(intranasal insulin) and Akt allosteric activators (SC79) can 

restore Akt phosphorylation, reduce Bax translocation, and 

result in a 38% decrease in hippocampal neuronal apoptosis 

rate in AD mice [40].  

 

3.3 Tau Protein Abnormalities and Apoptosis 

 

Hyperphosphorylation of Tau protein, leading to the 

formation of neurofibrillary tangles (NFTs), constitutes 

another critical pathological hallmark of AD. Aberrant Tau 

protein can activate apoptosis-associated proteins, such as 

Caspase-2, thereby inducing neuronal apoptosis [41]. 

Furthermore, Tau protein can promote cytochrome c release 

by impairing mitochondrial function, subsequently activating 

the intrinsic apoptotic pathway [42]. In the AD brain, Tau 

phosphorylation levels at residues including Ser202, Thr205, 

Ser214, Ser396, and Ser404 are elevated by 4 to 5-fold, 

causing its dissociation from microtubules and resulting in a 

loss of “track stability” function [43]. Recent research further 

reveals that Tau can directly or indirectly push neurons 

toward programmed cell death. In 3xTg-AD mice, the 

expression level of CypD in the hippocampus at 12 months of 

age positively correlates with Tau oligomer levels (r=0.81). 

CypD gene knockout reduces neuronal apoptosis by 40% [44]. 

Additionally, in SH-SY5Y cells, Tau knockdown 

significantly attenuates etoposide-induced P53 stabilization 

and Caspase-3 activity, leading to a 50% reduction in the 

apoptotic rate. This demonstrates that Tau acts as a “rheostat” 

for P53-dependent apoptosis following DNA damage [45]. In 

summary, Tau pathology propels neurons from structural 

damage to apoptotic demise through three major pathways: 

“microtubule disassembly–transport paralysis,” “oligomer–

mitochondrial pore,” and “DNA damage–P53.” Its oligomeric 

form acts as the pro-apoptotic toxic species, whereas NFT 

fibrils may represent a relatively inert “protective trash can” 

[44]. Targeting phosphorylation, oligomerization, or 

downstream nodes in the mitochondrial-genomic cascade 

offers novel and precise intervention points for anti-apoptotic 

therapy in AD.  

 

4. Intervention of Traditional Chinese 

Medicine (TCM) on Alzheimer’s Disease by 

Regulating Apoptotic Signaling Pathways 
 

4.1 Intervention of Traditional Chinese Medicine (TCM) 

Monomeric Compounds in Alzheimer’s Disease Based on 

Apoptotic Signaling Pathways  

 

1) Phenolic Esters Salidroside is the primary active 

component of Rhodiola rosea and exhibits a variety of 

pharmacological effects. Studies have shown that salidroside 

possesses anti-inflammatory, antioxidant, anti-fatigue, 

anti-aging, free radical scavenging, and immunomodulatory 

properties [46]. Research by Jia Xin et al. experimentally 

confirmed that Rhodiola rosea may improve the structure and 

function of cortical neurons by activating the BDNF/TrkB 

signaling pathway, scavenging free radicals, reducing the 

synthesis and release of inflammatory factors, inhibiting 

inflammatory responses and apoptosis, and enhancing 

synaptic plasticity, thereby mitigating neuronal damage [47].  

 

2) Glycosides Curculigoside, extracted from the rhizome of 

Curculigo orchioides, is a phenolic glycoside compound that 

functions as a potent antioxidant. It exhibits anti- 

inflammatory, antioxidant, and immunomodulatory effects 

[48-49]. Research indicates that curculigoside may enhance 

learning and memory abilities in dementia model rats by 

activating the BDNF/TrkB signaling pathway. This activation 

subsequently triggers downstream signaling molecules, 

including PI3K, MAPK/ERK, and phospholipase Cγ (PLCγ) 

pathways. It upregulates the expression of ERK and Bcl-2 

proteins in hippocampal tissue while inhibiting the expression 

of Bcl-2-associated X protein (Bax). These effects 

collectively suppress neuronal apoptosis, promote neuronal 

survival and neurogenesis, and enhance synaptic plasticity 

[50].  

 

3) Terpenoids Ligustri Lucidi Fructus is the dried ripe fruit of 

the evergreen tree Ligustrum lucidum (Oleaceae). It is 

traditionally used to tonify the liver and kidneys, improve 

vision, darken hair, nourish Yin, and promote longevity. 

Modern research indicates that Ligustri Lucidi Fructus 

possesses physiological functions such as antioxidant, 

anti-inflammatory, anti-aging, and immunomodulatory 

effects. Oleanolic acid is one of its active components, 
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exhibiting various biological activities and physiological 

functions. A study by Lin Ling et al. demonstrated that the 

diterpenoid monomer crocin can upregulate the expression of 

BDNF and TrkB proteins in hippocampal tissue, thereby 

improving learning and memory abilities in rats [51]. 

Research by Chen Weirong confirmed that the pentacyclic 

triterpenoid saponin extract Polygalae Radix total saponins 

can significantly increase the expression of BDNF and its 

receptor TrkB in the hippocampal CA1 region of AD model 

rats and enhance synaptic plasticity, which may be associated 

with its improvement of cognitive function [52].  

 

4) Sterols Ginsenosides belong to triterpenoid glycoside 

compounds and are a class of traditional Chinese medicine 

monomers found in low abundance but with high biological 

activity in ginseng. They exhibit anti-inflammatory, 

antioxidant, and anti-apoptotic effects [53]. Research has 

confirmed that ginsenoside Rg1 can ameliorate brain tissue 

damage in AD model rats and inhibit neuronal apoptosis [54]. 

Wu et al. elaborated on the mechanisms of ginsenoside Rg1 

and its deglycosylated derivatives in treating AD. They 

involve the inhibition of Aβ aggregation and Tau protein 

phosphorylation, enhancement of synaptic function, and 

reduction of inflammation and apoptosis, which are mediated 

through the regulation of multiple signaling pathways [55].  

 

5) Coumarin compounds possess a range of pharmacological 

effects, including antioxidant, antitumor, antibacterial, 

antiviral, anti-inflammatory, and neuroprotective activities, 

and are widely used in clinical practice [56]. Meranzin 

hydrate (MH), one of the active components isolated from 

Citrus aurantium, exhibits multiple physiological activities. 

Studies have demonstrated that meranzin hydrate can alleviate 

pathological damage in the hippocampus of rats, inhibit 

apoptosis, increase neuronal cell counts, and modulate 

neurotransmitter balance in AD model rats [57].  

 

5. Summary  
 

This review provides a detailed exploration of the critical role 

of apoptosis in Alzheimer’s disease (AD) as an entry point. It 

systematically summarizes the potential effects of traditional 

Chinese medicine (TCM) herbal formulas, proprietary TCM 

medicines, and TCM monomers in regulating this signaling 

pathway. A comprehensive analysis of their possible 

mechanisms for intervening in AD is presented, offering a 

theoretical foundation for the clinical application of TCM in 

AD treatment. Although TCM has demonstrated broad 

application prospects and significant potential in intervening 

in apoptosis for AD prevention and treatment, several 

challenges remain: (1) Both herbal medicines and proprietary 

TCM formulas exert their effects on AD by modulating 

apoptotic signaling pathways and their downstream cascades. 

However, identifying the specific active components 

responsible for this regulation remains difficult. (2) Current 

related research is primarily confined to animal experiments 

and in vitro cellular studies. There is a lack of clinical trial 

evaluations in human subjects, and research focusing on the 

recovery phase of AD is relatively scarce. (3) Existing studies 

mainly concentrate on formulas, extracts, and monomers. 

Research on single herbs and TCM component-based drugs is 

insufficient, indicating a need for a more stratified and 

comprehensive research approach. Therefore, building upon 

current research, further investigation is warranted. This 

includes clarifying the critical points at which TCM 

interventions targeting apoptosis exert their effects and 

elucidating their precise mechanisms of action. Additionally, 

exploring the potential of other characteristic TCM modalities 

to regulate relevant signaling pathways for AD treatment may 

provide novel insights and strategies for the clinical 

prevention, treatment, and drug development of AD within 

the TCM framework.  
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