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Abstract: Cuproptosis, a newly discovered process of copper-dependent cellular demise, is initiated by the direct interaction of Cu?* with
lipoylated components within the mitochondrial tricarboxylic acid (TCA) cycle. This mechanism hinders cellular respiration and
influences carcinogenesis, angiogenesis, and metastasis. The specific role of cuproptosis-related long non-coding RNAs (CRLs) in
cervical cancer remains poorly understood. This research developed a predictive model using CRLs and investigated its potential
molecular roles in the tumor microenvironment, as well as its influence on clinical outcomes in cervical cancer. We initially assessed
putative CRLs from TCGA cervical cancer transcriptome data by linking cuproptosis regulators with IncRNA expression using Pearson
correlation analysis. From 188 differentially expressed IncRNAs, univariate Cox and LASSO regression analysis developed a four-CRL
prognostic model consisting of AC096992.2, MKLNI1-AS, BAIAP2-DT, and LINC02356. Patients were categorized into two groups,
high-risk and low-risk, based on a computed risk score. Multivariate Cox analysis, which included clinicopathological factors, confirmed
substantial survival differences among these groups. Additionally, distinct profiles of immune checkpoint markers and tumor-infiltrating
immune cells were discerned between the two cohorts. Our CRL model serves as an independent predictive tool for cervical cancer,
deepens our understanding of CRL-mediated carcinogenesis, and provides valuable insights for the development of novel therapeutic

options.
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1. Introduction

Despite advances in early detection and preventive
vaccination, cervical cancer is still a common gynecological
troublemaker [1-4]. Conventional prognostic markers such as
FIGO stage, histological grade, and lymph node status are
prevalent in clinical practice; nevertheless, they fail to
correctly represent the immunological landscape or account
for intratumoral heterogeneity. Moreover, their predictive
value for immunotherapeutic response remains limited [5,6].
In contrast, transcriptome-derived molecular markers provide
more precise patient stratification and may improve
prognostic accuracy [7,8].

The presence of excess copper within cells can lead to
cuproptosis, a newly identified form of programmed cell
death that specifically targets lipoylated components of the
tricarboxylic acid (TCA) cycle [9]. The loss of iron-sulfur
cluster proteins, along with a build-up of lipoylated proteins,
cranks up proteotoxic stress, ultimately leading to cell death9.
This cellular apoptosis mechanism functions across diverse
biological contexts and pathologies, significantly impacting
the advancement and progression of numerous cancers [10].
Recent evidence indicates that cervical cancer cells undergo
cuproptosis, and exploring this phenomenon may facilitate the
identification of new screening biomarkers, prognostic
markers, and therapeutic targets for this cancer [11,12].
Although they don’t code for proteins, long non-coding RNAs

(IncRNAs) — transcripts longer than 200 nucleotides —
regulate a ton of cellular processes, including cell cycle
regulation, differentiation, and epigenetic modifications
[13-15]. LncRNAs significantly impact cancer progression,
invasion, metastasis, and resistance to treatment because of
their regulatory functions in proliferation and differentiation
[16]. The role of cuproptosis-related IncRNAs (CRLs) in the
tumor microenvironment and cervical cancer prognosis is still
unclear, even though many IncRNAs are non-invasive
markers for cervical cancer diagnosis, prognosis, and
monitoring [17]. Therefore, a methodical examination of
CRLs may offer a revolutionary viewpoint for improving
prognostication and pre-therapeutic efficacy evaluation in
patients with cervical cancer.

To figure out the connection between CRL signatures, patient
outcome, immunotherapeutic efficacy, and the immune
microenvironment, we distilled a four-CRL prognostic
cassette and built a risk-prediction framework using the
TCGA-CESC cohort. By multi-dimensionally analyzing this
data, we hypothesize that the CRL-based risk algorithm
predicts cervical cancer prognosis and provides a new tool for
therapeutic improvement.

2. Materials and Procedures

2.1 Source of Patient Data
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Clinical and RNA-seq metadata were obtained on 2025-07-05
from The Cancer Genome Atlas (TCGA)
(https://www.cancer.gov/). Including annotated age, FIGO
stage, TNM stage, overall survival (OS), and other
clinicopathologic characteristics, the cohort included 306
TCGA-CESC cases. Genes linked to cuproptosis were
assigned to training and testing sets of patients, which were
randomly divided 5:5. The Kaplan—-Meier Plotter
(http://kmplot.com/analysis/index.php?) was used to conduct
survival analyses. According to the TCGA publication criteria
(http://cancergenome.nih.gov/publications/publicationguideli
nes), mRNA-seq data are unrestricted public releases and did
not require extra Institutional Review Board permission.
GENCODE was wused to do IncRNA annotation
(https://www.gencodegenes.org/).

2.2 Model Development and Verification

The limma R program was used to do differential profiling
between normal and tumor samples, using an adjusted p-value
threshold of 0.05 and |logFC| > 1 [18]. Under ten-fold
cross-validation, univariate Cox and LASSO regressions
using the glmnet R package were used to identify genes linked
to survival [19]. Important genes and their coefficients were
then retrieved using a multivariate Cox model. A risk model
was created based on four CRLs, their appropriate cut-offs,
and associated coefficients. The CRL risk score of every
individual was calculated as follows: risk score =
Y(Expression IncRNA i % Coefficient IncRNA i).

2.3 Analysis of Consensus Clustering

The pheatmap R package was utilized to show CRL
expression divergence and clinicopathologic features across
clusters, while the ConsensusClusterPlus R program was
utilized to divide all CESC patients into discrete clusters in
order to analyze the CRL signature landscape in CESC [20].
GSVA was carried out using the
c2.cp.kegg.v7.4.symbols.gmt gene set, which was curated by
MsigDB, for functional interrogation.

2.4 Formulation of the Model

The survminer R program was employed to compute the
median risk score, facilitating the categorization of all CESC
patients into high- and low-risk groups. The generated cut-off
was subsequently integrated into the model equation.
Concordance was measured by the PEC program, and
time-dependent ROC curve analysis assessed the forecasting
capability of this model.

2.5 Separate Prognostic Evaluation and Nomogram
Development

Univariate and multivariate Cox regressions were employed
to ascertain whether the risk score served as an independent
prognostic factor. A nomogram was created in R to assess the
1-, 3-, and 5-year survival probability for CESC patients
within the TCGA cohort, using the risk score alongside
clinicopathologic variables.

2.6 Analysis of Functional Enrichment

To elucidate operational annotations and enriched pathways,
differentially expressed genes linked to the four CRLs in
CESC wunderwent enrichment profiling utilizing Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG).

2.7 Analyzing the Immune Risk Profile Within the Tumor
Microenvironment

To evaluate immune infiltration patterns, we leveraged
established computational tools—including XCELL, TIMER,
QUANTISEQ, MCPcounter, EPIC, CIBERSORT, and
CIBERSORT-ABS—to generate immune cell abundance
scores [21-25]. Spearman correlation analysis was then
applied to explore associations between immune cell
populations and risk stratification. CIBERSORT-derived
signatures were employed to further classify CESC patients
into immunological subgroups. A panel of twenty potentially
targetable immune checkpoint inhibitors was assembled
based on current research to assess the expression profiles
between the two patient cohorts [26].

Utilizing  prior research  from the  open-access
cancer-immunity database TIP
(http://biocc.hrbmu.edu.cn/TIP/), we curated a gene list
linked to favorable anti-PD-L1 treatment responses [27,28].
The GSVA method was employed to assess enrichment of
cancer-immunity cycle genes and treatment-responsive
signatures across risk groups stratified by our CRL-based
scoring system. Correlations between risk score and
immune-related gene profiles were visualized using the ggcor
R package.

2.8 Analysis of Statistics

Group comparisons were performed using the Wilcoxon
rank-sum test, with statistical significance set at P <0.05. R
was used for all bioinformatic analysis (v4.4.1).

3. Results

3.1 Discovery of an IncRNA Landscape Associated with
Cuproptosis in Cervical Cancer

After the TCGA-CESC dataset’s protein-coding transcripts
were eliminated, 16,205 IncRNAs were left for co-expression
analysis with the 16 cuproptosis genes that had previously
been identified [9] (Figure 1A). After filtering, a panel of 188
IncRNAs linked to cuproptosis underwent univariate Cox
screening (Figure 1B). The coefficient trajectories and
cross-validation dynamics of six IncRNAs that showed
significant relationships with patient outcome were plotted
after they were advanced to LASSO regression (Figure 1C, D).
A linear prognostic index was created by distilling four
high-dimensional CRLs using multivariate Cox proportional -
hazards modeling: AC096992.2 (f=-0.5328), MKLN1-AS
(f=0.5597), BAIAP2-DT (£ =0.3912), and LINC02356

(f=-04509 ). The risk score is equal to
(-0.5328 x AC096992.2 expression) +
(0.5597 x MKLN1-AS expression) +
(0.3912 x BAIAP2-DT expression) +
(-0.4509 x LINC02356 expression) . Strong connections

between cuproptosis genes and the CRL quartet were found
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by correlation profiling (Figure 1E), and there was a
noticeable inter-correlation among the four IncRNAs (Figure
1F).

3.2 CESC Molecular Subtypes are Defined by Consensus
Clustering

ConsensusClusterPlus divided CESC patients into two strong
clusters based on cuproptosis-linked IncRNA expression:
Cluster 1 exhibited a markedly elevated risk score

A W ATP7A

(P=2.22x107"°) (Figure 2A). Cluster 1 had considerably
lower overall survival, according to survival interrogation
using ClusterSurvival (Figure 2B, P=0.048). The four CRLs’
varying expression across clusters and their relationships to
clinicopathological factors were depicted in a heatmap
(Figure 2C). KEGG pathway analysis revealed enrichment of
oncogenic pathways—such as colorectal cancer, NSCLC, and
homologous recombination—in cuproptosis-linked tumor
biology (Figure 2D).
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Figure 1: Identifying potential IncRNAs linked to cuproptosis. (A) Sankey diagram showing the co-expression of 188 CRLs
and 16 cuproptosis genes. (B) Prognostic relationships of CRLs are evaluated using univariate Cox regression. (C) Ten-fold
cross-validation to fine-tune the LASSO model’s parameter selection. (D) Profiles of LASSO coefficients. (E) Correlation
matrix between cuproptosis genes and the four chosen CRLs. (F) How the four CRLs relate to one another.

* P<0.05; ** P<0.01; *+% P<0.001.
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Figure 2: Consensus clustering for CESC molecular stratification. (A) The disparity in risk scores across the two clusters. (B)
The disparity in overall survival across clusters. (C) Variations in the distribution of CRL expression and clinicopathologic
characteristics among clusters. (D) The two-cluster comparison’s KEGG enrichment profiles.

3.3 Verification of CRL Signatures and Their Prognostic
Significance

According to the median risk score, patients were categorized
into two categories, designated as low-risk and high-risk.
While the high-risk group exhibited upregulated MKLN1-AS
and BAIAP2-DT, the low-risk cohort showed elevated
AC096992.2 and LINC02356 expression (Figure 3A).
Mortality escalated consistently as risk scores rose for the
entire cohort (Figure 3B, 3C). Among the overall patient
population, individuals classified as high risk exhibited poorer
outcomes compared to their low-risk counterparts (Figure 3D).
The group was subsequently partitioned into two subgroups
randomly in a 1:1 ratio: training (n = 152) and testing (n = 152)
subgroups. This prognostic robustness persisted in both
training (Figure 3E) and testing (Figure 3F) subsets.
Time-dependent ROC analysis confirmed high specificity and
sensitivity, yielding AUCs of 0.698, 0.708, and 0.725 for the

entire population at 1, 3, and 5 years (Figure 3G). The
four-CRL model demonstrated robust predictive efficacy,
yielding AUCs of 0.783, 0.747, and 0.748 in the training set
(Figure 3H) and 0.660, 0.676, and 0.731 in the testing set
(Figure 31).

3.4 Principal Component Analysis of the High-expression
Genes, Cuproptosis Genes, Cuproptosis-related Lncrnas,
and CRL Signatures

Four different gene sets were used for PCA: the
high-expression genes, cuproptosis genes, cuproptosis-related
IncRNAs, and CRL signatures. The findings indicated that the
CRL-derived IncRNAs most effectively distinguished high-
from low-risk patients, reinforcing their classification
potential (Figure 4A-D). These results highlight the CRL
signature’s greater discriminatory ability.
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Figure 3: CRL signature validation for prognostic prediction. (A) The differential expression of the four CRLs between the two
groups. (B) Distribution of risk scores among CESC patients. (C) Risk score and patient survival time correlation. (D) TCGA
cohort-wide Kaplan-Meier survival curve. (E) The training TCGA subset’s Kaplan-Meier survival curve. (F) The testing TCGA
subset’s Kaplan-Meier survival curve. (G) The entire TCGA cohort’s time-dependent ROC curves. (H) The training subset’s
time-dependent ROC curves. (I) The testing subset’s time-dependent ROC curves.
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3.5 Clinical Subgroup Analysis of the CRL Risk Model

The heatmap illustrated that the variance of various
clinicopathologic parameters, such as age, FIGO stage,
histologic diagnosis, TNM stage, and risk score, was
markedly affected by the four CRLs across risk groups in all
TCGA cervical cancer samples (Figure 5A). Subsequently,
patients were classified according to age (> 65 versus < 65
years), histological type (adenocarcinoma versus squamous),
pathological stage, and TNM classification. Survival was
compared within each subgroup (Figure 5B—M). In all other
categories, high-risk people exhibited markedly inferior
overall survival compared to low-risk patients, with the
exception of subgroups with limited sample sizes
(adenocarcinoma, stage III-IV, NO, and M1). This finding
suggests that our CRL risk model can effectively predict the
prognosis of various clinical subgroups of CESC.

3.6 A Nomogram That Includes Risk Score and
Clinicopathologic Factors

Univariate Cox found the risk score and N stage as significant
predictors (Figure 6A), whereas multivariate Cox validated
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the risk score’s independent prognostic strength (Figure 6B).
The four-IncRNA model’s clinical value was expanded by
creating a nomogram that included age, stage, histology,
TNM stage, and the CRL risk score, which accurately
predicted 1-, 3-, and 5-year survival probabilities (Figure 6C).
In predicting the prognosis of CESC, the CRL risk model
(AUC = 0.698) performed better than conventional
clinicopathologic markers (Figure 6D, E).

3.7 CRL-based Prognostic Enrichment
Profiling

Signature

To identify relationships between the risk score and biological
mechanisms or signaling cascades, GO and KEGG
enrichment analyses were utilized. While KEGG pathways
were filtered at FDR < 0.15 and P.adj < 0.05, significant GO
keywords were kept at FDR <0.05 and P.adj<0.05. The
resulting enrichments showed close connections between the
four CRLs and several functional modules, including TNF
signaling, IL-17 signaling, extracellular matrix organization,
and cytokine activity modulation (Figure 7A, B, C, D).
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Figure 5: The CRL risk model’s prognostic performance for each clinical subtype of CESC. (A) Heatmap showing the
relationship between clinicopathologic factors and risk score. For (B) age > 65 years; (C) age <= 65 years; (D) adenocarcinoma;
(E) squamous cell carcinoma; (F) stage [-I1I; (G) stage III-1V; (H) T1; (I) T2-T4; (J) NO; (K) N1; (L) M0; (M) M1, Kaplan—
Meier survival curves categorized by the CRL signature.
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Figure 6: Assessment of the independent predictive significance of the CRL risk score alongside clinical and pathological
characteristics. (A) Univariate Cox regression for clinical factors and risk score. (B) The forest plot of multivariate Cox
regression’s forest plot validates the risk score as an independent predictor. (C) Nomograms estimate 1-year, 3-year, and 5-year
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that contrast the risk score’s prediction accuracy with traditional clinical characteristics. (E) ROC analysis assessing the risk
score’s discriminatory performance in relation to specific clinicopathologic parameters.
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Figure 7: Pathway enrichment analysis utilizing the KEGG and GO. (A) Circos map showing the GO signaling pathways that
rank highest. (B) The top GO pathways are divided into three categories: molecular function (MF), cellular component (CC),
and biological process (BP). (C) Circos plot showing the main pathways of KEGG signaling. (D) The top KEGG-enriched

pathways in a bubble plot.

3.8 Tumor Microenvironment and Immune Cell

Infiltration can be Predicted by the CRL Risk Score

The CRL model has been previously associated with tumor
microenvironment (TME) remodeling through GO
enrichment analysis. We subsequently analyzed the
correlation between the tumor immunity and CRL score, as
the immunological elements of the tumor microenvironment
considerably influence prognosis [29]. CIBERSORT initially
assessed the association between 22 tumor-infiltrating
immune cell (TIIC) subgroups and the risk score (Figure 8A).
A comparative analysis revealed substantial differences
between the low- and high-risk groups (Figure 8B). CD8+ T
cells exhibited the most significant variations, indicating that
CRLs predominantly influence the quantity and functionality

of CD8+ T cells.

Concurrently, we analyzed the gene expression of immune
checkpoints. The presence of several checkpoint genes varied
among risk groups, and immune-checkpoint blockage is
essential for the treatment of cervical cancer. The low-risk
cohort exhibited elevated expression levels of all significantly
altered checkpoints, including CD48, TNFRSF25, LAG3,
CTLA4, BTLA, and IDO2 (Figure 8C). Specifically, CD8+
T-cell activation and proliferation are associated with elevated
TNFRSF25 [30,31]. Patients with elevated TNFRSF25
showed enhanced CD8+ T-cell infiltration, low-risk
classification, and a better prognosis, as expected by the CRL
signature.
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Figure 8: The tumor microenvironment and immunotherapeutic response are predicted by the CRL-derived risk score. (A) A
bubble plot depicting the associations between the CRL risk score and immune cell populations. (B) Variations in immune cell
infiltration profiles across the two groups. (C) Variations of immune checkpoint molecule expression across two groups.

3.9 The CRL Risk Score Predicts Divergent Immune
Functional Landscape

We investigated immune function in CESC patients, as the
risk score enables physicians to tailor immunotherapeutic
protocols according to each patient’s distinct checkpoint-gene
expression profile. In comparison to the high-risk group, the
low-risk group demonstrated enhanced immune activity, even
while the low-risk subgroup exhibited an enhanced expression
of immune-checkpoint genes (Figure 9A, B). Notably,
immunosuppressive mechanisms such as T-cell and APC

co-inhibition were incorporated into these heightened
activities, indicating that diminishing suppressive signals may
improve prognosis in the low-risk cohort. This idea was
supported by the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithmic profiling, which showed that the low-risk
group had significantly higher TIDE scores than the high-risk
group ( P<0.01 ) (Figure 9C). It indicates that
immune-checkpoint inhibitors may be especially helpful for
low-risk patients.
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Figure 9: Immunotherapy can be guided by the CRL risk score, which predicts immune functional divergence. Variations in
immune functional activity across two groups (A, B). Comparative analysis of TIDE scores between cohorts categorized as high
and low risk. * P < 0.05; %k« P <0.01; **k P <(.001.

4. Discussion

Cervical cancer, the fourth most prevalent gynecological
malignancy worldwide, significantly contributes to
cancer-related mortality among women, posing a substantial
threat to women’s health [1]. Cervical cancer remains the
second greatest cause of cancer-related mortality among
women aged 20-39 in the United States, with incidence

among those aged 30-44 rising by 1-2 percent per year [32,33].

Consequently, there is an imperative demand for more
effective screening and therapeutic approaches. The prognosis
remains unfavorable despite progress in conventional
therapies, particularly for patients with advanced illness. The
circumstance underscores the necessity for dependable
biomarkers and feasible therapeutic targets.

Reliance on any one biomarker for CESC prognosis is prone
to inaccuracy, much like the drawbacks of single-gene
predictors. In contrast to single-biomarker models, composite
models derived from multiple linked genes exhibit greater
accuracy in prognostic predictions and substantially influence
personalized cancer treatment. Cuproptosis is a
copper-dependent cell death mechanism that has recently
attracted much interest because of its potential for therapeutic
use [9]. Cytotoxicity brought on by copper homeostasis can

prevent the growth of cancerous cells, overcome resistance to
chemotherapy, and allow for the targeted destruction of
cancerous cells during immunotherapy [34-36]. Examining
CRLs in CESC may clarify oncogenic pathways, aid in early
identification, enhance risk stratification, and increase
survival because long non-coding RNAs are associated with
tumor proliferation, invasion, and metastasis [37].

We created a four-CRL model (AC096992.2, MKLNI1-AS,
BAIAP2-DT, and LINC02356) that defines the
immunological landscape associated with CESC and
independently predicts its prognosis. These IncRNAs were
validated as independent prognostic indicators through
LASSO and multivariate Cox analysis, which also accurately
stratified patients into two risk categories. Several members
of this quartet have been assigned oncogenic or
tumor-suppressive roles in previous reports: MKLNI1-AS
promotes  pancreatic cancer progression via the
miR-185-5p/TEADI axis, BAIAP2-DT correlates with breast
cancer outcome, and AC096992.2 is an established prognostic
indicator in cervical cancer [38-40]. According to ROC and
calibration curves, the excellent prediction accuracy of the
four-CRL model was validated. The prediction potential of
the signature was augmented through combining it with
clinical data into a nomogram, which provided a valuable tool
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for predicting patient prognosis in CESC.

Encircling neoplastic cells, the tumor microenvironment
(TME) is a dynamic, multicellular ecosystem that includes
vascular networks, cancer-associated fibroblasts, endothelial
cells, extracellular matrix, soluble mediators, and
immunological subsets such as T lymphocytes and
macrophages [41]. Tumor-infiltrating immune cell (TIIC)
density and immune-checkpoint molecule (ICI) expression
characterize the immunological compartment, which has
become a crucial biomarker and predictor of
immunotherapeutic success in this context [42,43].

When TIICs from two risk-CRL groups were compared, the
abundance of CD8" T cells showed a notable difference.
Cervical squamous cell carcinoma prognosis can be
independently predicted by CD8" T lymphocytes, the primary
effectors of anti-tumor immunity [44,45]. The preclinical data
showing that TNFRSF25 agonism activates and increases
CDS8* T cells, producing strong anti-tumor responses in mouse
models, is consistent with the observed higher level of CD8* T
cells within the group of low-risk [46]. It suggests that
patients with a low risk exhibited heightened infiltration of
CD8" T-cells, presumably attributable to the association
between elevated TNFRSF25 and TNFRSF4 levels and the
proliferation and activation of CD8" T-cells [30].

Crucially, immune-checkpoint blocking is anticipated to be
more beneficial for low-risk people, as indicated by the CRL
signature. Therefore, the four-CRL model improves
prognostication and helps guide focused and customized
immunotherapeutic approaches for CESC, which may lead to
better clinical results.

Our research is clinically significant for forecasting the
prognosis and therapy options for CESC patients; yet, it has
obvious limitations. Validation was limited to publicly
accessible TCGA data, and inter-patient variation may affect
the four-CRL model’s performance. Predictive robustness is
supported by in silico analysis; nevertheless, comprehensive
in vitro and in vivo investigations are essential to elucidate the
molecular foundations of these correlations. As normal
cervical tissue is rarely obtained clinically, our study lacks
patient - derived sample validation. If adequate clinical
samples are collected, we’ll conduct the missing experimental
validation.

5. Conclusion

We identified cuproptosis-associated IncRNAs to be a
prospective prognostic biomarker and a possible approach for
treatment in cervical squamous cell carcinoma. Clinicians
may now discern patients who are most likely to benefit from
immunotherapy or cytotoxic treatments and tailor precision
care utilizing a 4-CRL model that reliably predicts patient
outcomes and delineates immunological context.
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