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Abstract: Background and objective: Colorectal cancer (CRC) is a highly heterogeneous disease, making treatment and prognosis 

prediction challenging. Early diagnosis of CRC and identification of gene expressions associated with its onset are crucial for prognosis, 

especially before clinical symptoms appear. This study aims to explore potential key genes involved in CRC and evaluate their clinical 

application in predicting the disease. Methods: This study utilizes differential expression analysis and Weighted Gene Co-expression 

Network Analysis (WGCNA) to identify novel susceptibility modules and key genes associated with colorectal cancer (CRC). Through 

KEGG and GO analyses, we aim to investigate the potential functions of these key genes. Subsequently, we will construct a Nomogram 

model and assess its diagnostic value for CRC using ROC curves. Based on genome-wide association studies, a Mendelian randomization 

analysis will be conducted to determine the causal relationship between these key genes and CRC. Finally, we will explore the association 

between these key genes, which are causally linked to CRC risk factors, and immune cell infiltration. Results: A gene co-expression 

network was constructed using WGCNA, from which key modules related to colorectal cancer (CRC) were identified, along with 963 

overlapping key genes derived from WGCNA. GO and KEGG pathway enrichment analyses revealed that these genes are involved in the 

biosynthesis of ribonucleoprotein complexes, rRNA metabolic processes, chromatin organization-regulated signaling pathways, as well as 

cell cycle, DNA replication, and ribosome-related pathways. Using Cytoscape software, we identified the top five highly expressed genes: 

CDC2, CCNB1, CCNA2, TOP2A, and CCNB2. We then developed a Nomogram model, which effectively predicts the risk of CRC. The 

performance of this model in CRC diagnosis was further validated through ROC curve analysis, showing promising diagnostic accuracy. 

Finally, we focused on CDC2 and observed a causal relationship between CDC2 and immune cell infiltration in CDAD. Through inverse 

variance-weighted analysis, we found that CDC2 significantly increased the risk of CDAD, with an OR of 1.0005 (95% CI = 1.0001-1.001, 

P = 0.01). Conclusion: We successfully identified the core genes associated with colorectal cancer (CRC). This finding provides important 

insights for further research into early diagnostic methods for CRC, while also contributing to the understanding of the molecular 

mechanisms underlying CRC risk genes.  

 

Keywords: CRC, WGCNA, CDC2, Mendelian randomization analysis.  

 

1. Introduction 
 

Colorectal cancer (CRC) is considered one of the most 

aggressive cancers globally, causing over 50,000 deaths 

annually [1]. The disease is characterized by insidious onset, 

rapid progression, and a high propensity for chemotherapy 

resistance [2,3], placing a heavy burden on both society and 

healthcare systems. Advanced CRC patients often face the 

risk of recurrence and metastasis, with a 5-year survival rate 

of less than 10% [4-6]. In contrast, early-stage CRC patients 

who undergo surgical treatment experience a significant 

increase in 5-year survival rates, reaching up to 90% [7]. 

Therefore, early diagnosis and identification of gene 

expressions associated with CRC are crucial for both 

prognosis and treatment [8,9]. 

 

The etiology and pathogenesis of CRC are complex and 

multifactorial, and their full mechanisms remain unclear, 

potentially involving genetic, environmental, and lifestyle 

factors. With ongoing advancements in science and 

technology, bioinformatics and Mendelian randomization 

(MR) analysis have become essential tools in CRC research, 

providing valuable insights at different levels of disease 

investigation. In this study, we utilized multiple 

bioinformatics software and databases to identify pathways 

associated with the disease, including Weighted Gene 

Co-expression Network Analysis (WGCNA), Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment 

analysis, and Gene Set Enrichment Analysis (GSEA). 

WGCNA is a bioinformatics method used to explore gene 

expression data, aiming to uncover gene-gene interactions and 

their relationships with biological traits. This approach is 

widely applied in biological research, especially for 

identifying gene networks linked to complex diseases and 

biological processes. It can be used with various types of 

high-dimensional data, including proteomics, genetic marker 

data, gene expression profiles, and metabolomics [10]. 

Additionally, WGCNA can assist in identifying potential 

therapeutic targets and candidate biomarkers. Therefore, our 

study aims to employ these methods to identify CRC-related 

genes, novel biomarkers, and potential disease mechanisms. 

 

By conducting an in-depth analysis of CRC-related data, we 

identified differentially expressed genes (DEGs). We then 

used WGCNA to pinpoint gene modules most strongly 

associated with CRC, narrowing down the pool of candidate 

genes. Subsequently, a protein-protein interaction (PPI) 

network was constructed using Cytoscape software, and the 

top 5 hub genes were selected based on degree centrality 

scores using the CytoHubba plugin. These genes—CDC2, 

CCNB1, CCNA2, CCNB2, and TOP2A—contribute to the 

diagnostic model for CRC and shed light on the potential 
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mechanisms underlying CRC risk genes. 

 

Mendelian randomization (MR) is a biostatistical method 

used to investigate causal relationships, named after Austrian 

geneticist Gregor Mendel, one of the founders of genetics. 

Recently, MR has gained widespread popularity as a reliable 

method, utilizing single nucleotide polymorphisms (SNPs) as 

instrumental variables (IVs) to assess causal relationships 

between exposures and outcomes [11,12]. MR employs 

genetic variations closely related to exposure factors as IVs, 

allowing the inference of causal relationships between 

exposures and outcomes. In our study, MR was used to 

explore the causal relationship between CDC2 and CRC. 

Additionally, bioinformatics analyses, such as organ-specific 

localization and immune cell infiltration analysis, provided 

molecular foundations and guidance for personalized drug 

therapy, aiming for precise, individualized, and optimized 

treatment. The research workflow is illustrated in Figure 1. 

 
Figure 1: Work flow chart 
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2. Materials and Methods 
 

2.1 Data source 

 

We used the GSE74602 dataset, which includes 30 normal 

samples and 30 colorectal tumor samples, as the training set, 

and the GSE17536 dataset as the validation set. All data were 

retrieved from the Gene Expression Omnibus (GEO) 

database. 

 

2.2 Identification of Potential Targets of for CRC 

 

2.2.1 Differentially expressed genes identification 

 

First, we used R software (version 4.4.1) to read the 

GSE74602 dataset and performed preprocessing, including 

batch correction and normalization. Next, we employed the 

'limma' package to conduct differential expression analysis 

(DEG) screening. After performing statistical analysis on the 

expression levels, we generated volcano plots and DEG 

expression heatmaps using the 'pheatmap' and 'ggplot2' 

packages in R. 

 

2.2.2 Weighted gene co-expression network analysis 

 

WGCNA is a powerful tool that helps identify modules and 

key genes within gene co-expression networks, as well as 

their relationships with biological traits. It can also be used to 

identify candidate biomarkers [13]. In this study, we used the 

'WGCNA' package in R to construct a colorectal cancer (CRC) 

gene co-expression network. Finally, we evaluated the 

correlation between different modules and the pathogenesis of 

CRC, selecting the module most strongly associated with 

CRC as the core module of the WGCNA analysis. 

 

2.2.3 Screening of candidate pivotal genes and Go/KEGG 

analysis 

 

The intersecting genes between WGCNA and DEGs were 

selected as candidate core genes related to the pathogenesis of 

CRC. We also utilized KEGG, a comprehensive database 

resource for gene functional analysis. Next, we performed 

Gene Ontology (GO) and KEGG enrichment analyses using 

the 'clusterProfiler' package in R to gain deeper insights into 

the potential mechanisms of disease progression and 

pathogenesis. 

 

2.3 Discovery and Analysis of HubGenes 

 

2.3.1 Protein–protein interaction network hub gene 

 

STRING and Cytoscape were used to predict and visualize 

molecular interactions and the protein-protein interaction (PPI) 

network. Subsequently, the degree centrality algorithm in 

Cytoscape was applied to rank the key genes within the PPI 

network. 

 

2.3.2 Nomogram model construction 

 

The 'rms' package was used to construct a Nomogram model 

for predicting the risk of colorectal cancer (CRC). To evaluate 

the performance of the Nomogram model, we calculated 

Harrell's Concordance Index, a metric used to assess 

predictive accuracy. Next, the 'ROC' package was used to 

construct receiver operating characteristic (ROC) curves to 

validate the diagnostic effectiveness of the candidate 

biomarkers. The area under the ROC curve (AUC) was used 

to represent accuracy, with an AUC value between 0.7 and 1.0 

generally considered indicative of good accuracy. 

 

2.3.3 Immune cell analysis 

 

To investigate the function of immune cells in CRC, we used 

the CIBERSORT analysis method to assess the immune cell 

infiltration levels of 22 immune cell types in colorectal cancer 

(CRC) [14]. 

 

2.3.4 Mendelian randomization 

 

In this study, we employed a two-sample Mendelian 

randomization (MR) approach to explore the causal 

relationship between hub genes and CRC risk, with SNPs 

defined as instrumental variables (IVs). The hub gene data 

were obtained from publicly available genome-wide 

association study (GWAS) datasets. We selected CDC2, the 

gene with the highest degree centrality, and colon cancer as a 

representative disease of CRC lesions for the MR analysis. 

Data for CDC2 can be found at 

[https://gwas.mrcieu.ac.uk/datasets/?trait__icontains=CDC2], 

and data for colon cancer are available at 

[https://gwas.mrcieu.ac.uk/datasets/?gwas_id__icontains=&y

ear__iexact=&trait__icontains=colon+cancer&consortium__

icontains=]. MR analysis was conducted using the 

'TwoSampleMR' package, and inverse variance weighting 

(IVW) was applied to evaluate the relationship between the 

central gene levels and the risk of CRC. Additional sensitivity 

analyses were performed using MR-Egger [15,16]. 

 

3. Results 
 

3.1 Identification of Potential Targets of for CRC 

 

3.1.1 DEGs screening 

 

CRC datasets (GSE74602) were obtained from the GEO 

database, and differentially expressed genes (DEGs) in CRC 

were identified. We identified 1,480 genes (811 upregulated 

and 668 downregulated) as shown in Figure 2-A. 

 

3.1.2 Construction of WGCNA network and identification of 

neuropathic pain-related module 

 

To determine whether potential gene modules are associated 

with CRC, we performed WGCNA analysis on all candidate 

genes from the CRC dataset (GSE24982) (Figure 2-B). We 

identified 11 distinct modules (Figure 2-C). Finally, we 

extracted the genes from the MEbrown module, which had the 

highest correlation coefficient and the lowest P-value in the 

GSE24982 dataset, for subsequent analysis. 

 

3.1.3 Go/KEGG analyses 

 

We screened for shared genes between the WGCNA-derived 

module genes and the DEGs. A total of 963 overlapping genes 

were selected as candidate HubGenes, which may play an 

important role in the occurrence and progression of CRC 
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(Figure 2-D). We conducted GO and KEGG analyses to 

further explore the potential functions of these 440 

overlapping genes (Figure 2-E, 2-F). GO enrichment analysis 

indicated that the shared genes primarily affect biological 

functions such as ribonucleoprotein complex biogenesis, 

ribosome biogenesis, rRNA processing, and rRNA metabolic 

processes. KEGG enrichment analysis showed that these 

genes mainly influence pathways such as the cell cycle, DNA 

replication, purine metabolism, ribosome, and ribosome 

biogenesis in eukaryotes. 

 
Figure 2: 2-A Volcano map of differentially expressed genes, red for up-regulated genes and green for down-regulated genes; 

2-B Clustering of dendrograms of all genes in the GSE24982 dataset based on the topological overlap matrix (1-TOM). Each 

branch in the clustering tree represents a gene, and co-expression modules are constructed in different colors; 2-C Clustered 

gene modules in the GSE24982 dataset and module-trait heatmap of CRC. Each module contains the corresponding correlation 

coefficient and P value; 2-D Venn diagram showing 963 overlapping candidateHubGenes; 2-E GO enrichment analysis. 2-F 

KEGG pathway enrichment analysis. 
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3.2 Discovery and Analysis of HubGenes 

 

3.2.1 PPI network analysis for hub genes 

 

The STRING online tool was used to construct a PPI network 

with an interaction score greater than 0.9 (Figure S1-A). 

Subsequently, Cytoscape software was employed to visualize 

the top 5 upregulated genes (Figure 3-A). The five core genes 

identified were CDC2, CCNB1, CCNA2, TOP2A, and 

CCNB2. The color intensity represents the score, with darker 

colors indicating higher scores. According to the gene 

expression difference volcano plot (Figure 3-B), all these 

HubGenes were upregulated. We performed differential 

expression analysis of these five HubGenes in the validation 

cohort GSE33113. Consistent with our predictions, the 

mRNA expression levels of the five hub genes were 

significantly upregulated in IBD samples compared to control 

samples (Figure 3-C). 

 

3.2.2 Construction of nomogram model for CRC risk 

prediction 

 

A nomogram model was constructed using the five core genes 

CDK1 (CDC2), CCNB1, CCNA2, TOP2A, and CCNB2 to 

predict CRC risk (Figure 3-D). The model demonstrated good 

performance in CRC prediction. Subsequently, ROC curves 

for the five core genes were calculated to assess diagnostic 

efficacy. The nomogram's AUC for distinguishing CRC 

control and experimental samples showed high accuracy 

(Figure 3-E). The AUC values for the five core genes were as 

follows: CDK1 (CDC2) AUC = 0.718, CCNB1 AUC = 0.993, 

CCNA2 AUC = 0.997, TOP2A AUC = 1.000, and CCNB2 

AUC = 0.996. All five core genes were upregulated (Figure 

3-D). To further understand the disease risk, we also 

constructed a line chart analysis for the five HubGenes 

(Figure 3-C). Among the five hub genes, the most accurate 

prediction of disease incidence was for TOP2A, with a 

prediction rate of 99%. 

 

3.2.3 Protein-Protein Interaction (PPI) of HubGenes Using 

GeneMANIA 

 

GeneMANIA was used to predict functionally similar genes 

to the HubGenes. The identified HubGenes were input into 

the GeneMANIA database (https://genemania.org/) [17], and 

20 similar hub genes were obtained (Figure 3-F). A PPI 

network was constructed, with the HubGenes in the inner 

circle and the predicted genes in the outer circle. The 

functions of these genes were primarily associated with cell 

cycle G2/M phase transition, regulation of cyclin-dependent 

protein kinase activity, serine/threonine protein kinase 

complex, cell cycle checkpoint, protein kinase complex, and 

negative regulation of mitotic cell cycle. These findings align 

with previous studies on inflammatory bowel disease (IBD) 

[18-21]. Dysregulation of cyclin-dependent protein kinases 

(CDKs) plays a critical role in the onset and progression of 

cancers, particularly in colorectal cancer (CRC). Cell cycle 

checkpoints, which are key control points in the cell division 

process, ensure that essential events and DNA repair are 

completed before a cell progresses to the next stage of the cell 

cycle. In cancers like CRC, disruption of these checkpoints 

can lead to abnormal cell proliferation and the development of 

cancer cells. 

 

3.2.4 Construction of the Key Target-Organ Tissue Network 

 

The BioGPS database is an online resource platform for gene 

annotation and querying gene expression across tissues and 

cells. The five HubGenes were imported into BioGPS, with 

human as the selected species. The top 10 organs or tissues 

with the highest gene expression for each HubGene were 

queried via the Interactive Image feature. The resulting data 

was used to construct the "HubGenes-Organ Tissue Network" 

using Cytoscape (Figure 3-G). The five HubGenes primarily 

affect Leukemia lymphoblastic (MOLT-4), Cardiac Myocytes, 

Leukemia promyelocytic-HL-60, Lymphoma Burkitt's 

(Daudi), Colorectal adenocarcinoma, Thymus, and Bronchial 

Epithelial Cells. Although the BioGPSHubGenes information 

did not include the spleen, expression was noted in immune 

cells closely related to the spleen, such as 

CD105+_Endothelial, 721_B_lymphoblasts, 

CD71+_EarlyErythroid, CD34+, and CD33+_Myeloid. This 

validates the immune regulatory role of the HubGenes from 

an immunological perspective and provides a biological basis 

for immunotherapy in CRC. Interestingly, these five 

HubGenes are directly localized to colorectal cancer tissues. 

 

3.2.5 Construction of lncRNA-miRNA-mRNA ceRNA 

Network 

 

Based on the miRDB database (http://mirdb.org/), 

miRTarBase database 

(http://mirtarbase.mbc.nctu.edu.tw/php/index.php), and 

TargetScan (https://www.targetscan.org/vert_80/), we 

identified the miRNA target genes of the HubGenes. A total 

of four HubGenes were found to target 111 miRNAs. 

Subsequently, using the SpongeScan database, we identified 

64 lncRNAs that interact with these miRNAs, resulting in the 

construction of an lncRNA-miRNA-mRNA network. This 

network was imported into Cytoscape 3.10.2.0 for 

visualization of the ceRNA network (Figure 3-H). This 

diagram visually reflects the competition between LncRNAs 

and HubGenes for binding miRNAs. 
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Figure 3: 3-A The core genes of the interactive network are obtained through the degree algorithm; 3-B Hub gene volcano map, 

red is up-regulated genes, green is down-regulated genes; 3-C HubGenes differential analysis; 3-D Hub gene Nomogram model; 

3-E ROC curve, evaluate the diagnostic effect of the nomogram model and each hub gene; 3-F GeneMANIA; 3-G 

BioGPSNetWork, Note: The blue circle represents HubGenes, and the red "V" represents organ tissue. 3-H ceRNANetwaork, 

Note: The red circle represents HubGenes, the green "V" represents miRNA, and the blue diamond represents lncRNA. 
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4. Assessment of Immune Cell Infiltration in 

CRC 
 

We used the CIBERSORT algorithm to calculate the 

abundance of various immune cell infiltrates in CRC patients 

(Figure 4-A). The violin plot showing differences in immune 

cell infiltration is displayed in Figure 4-B. Compared to the 

normal control samples, the experimental group exhibited 

significantly higher proportions of B cells naive, plasma cells, 

T cells CD4 memory resting, macrophages M0, M1, M2, mast 

cells activated, and neutrophils (P<0.001). Through immune 

cell correlation analysis, we assessed the relationship between 

immune cells and HubGenes. As shown in Figure 4-D, the 

upper right corner clearly indicates that CDC2 is positively 

correlated with T cells gamma delta and negatively correlated 

with monocytes; CCNB1 is positively correlated with both T 

cells gamma delta and macrophages M2; CCNA2 is positively 

correlated with macrophages M2 and T cells CD4 memory 

activated; TOP2A is negatively correlated with monocytes 

and positively correlated with T cells CD4 memory activated; 

CCNB2 is negatively correlated with B cells naive. 

Additionally, immune cell PCA analysis (Figure 4-C) visually 

reflects the ability to distinguish between normal and 

experimental groups based on immune cell content. These 

results demonstrate the direct relationship between immune 

cell infiltration and the key regulatory factor CDC2 in cell 

cycle regulation in colorectal cancer. 

 
Figure 4: 4-A Abundance of immune cell infiltration; 4-B immune cell differential analysis; 4-C immune cell PCA analysis; 

4-D immune cell correlation; in the lower left corner of the graph, red represents positive correlation, blue represents negative 

correlation, the red line in the upper right corner represents positive correlation, the green line represents negative correlation, 

and the thickness of the line represents the absolute value of the correlation coefficient. 

5. CDC2 was Causally Associated with the Risk 

of Colon Cancer 
 

The SNP characteristics of CDC2 and colon cancer are shown 

in the supplementary table Table S3. MRresult. None of the 

SNPs are weak instrumental variables. The causal effects of 

each genetic variation on colon cancer are illustrated in Figure 

5-A and 5-B. We evaluated the causal relationship between 

CDC2 levels and colon cancer. Using the IVW method, we 

found that CDC2 is associated with the risk of colon cancer, 

with an odds ratio (OR) of 1.001 (95% CI = 1.0001–1.001, P = 

0.01). The MR-Egger method showed no significant 

statistical significance [OR = 1.001, 95% CI = 0.993–1.009, P 

= 0.78]. The funnel plot of the causal effect appears roughly 

symmetrical (Figure 5-C), and the intercept of the MR-Egger 

regression showed no evidence of horizontal pleiotropy (P = 

0.96), further suggesting that pleiotropy does not bias the 

causal effect. As shown in Figure 5-D, after removing each 

SNP, we systematically re-conducted MR analysis on the 

remaining SNPs. The results remained consistent, indicating 

that the causal relationship calculated from all SNPs is 

significant. This also suggests that there are no dominant 

SNPs affecting the relationship between CDC2 levels and 
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colon cancer, validating the previous MR results. 

 
Figure 4: 4-A Forest plot shows the causal effect of each SNP on colon cancer risk; 4-B Scatter plot shows the causal effect of 

CDC2 on colon cancer risk; 4-C Funnel plot shows the overall heterogeneity of MR estimates of the effect of CDC2 on colon 

cancer. 4-D Visualization of the causal effect of CDC2 on colon cancer risk when one SNP is removed. 

6. Discussion 
 

Colorectal cancer (CRC) is a malignant tumor whose 

treatment and prognosis are largely stage-dependent. Early 

diagnosis and intervention can significantly enhance patient 

survival rates. With advancements in molecular biology, 

CRC-related genes have emerged as key areas of research 

[22]. By quantifying gene expression across thousands of 

genes and obtaining genome-wide expression data, 

researchers can unravel complex gene regulatory networks, 

uncover molecular characteristics of CRC, and identify 

potential diagnostic and therapeutic targets. These findings 

contribute to improved therapeutic strategies, offering better 

prognostic outcomes and increased survival opportunities for 

CRC patients. 

 

Diagnostic Biomarkers and Current Limitations 

 

Diagnostic biomarkers are molecules or substances that aid in 

disease diagnosis, progression tracking, treatment planning, 

and efficacy evaluation. Currently, endoscopic pathology is 

the gold standard for diagnosing CRC. However, this method 

is invasive, costly, and demands high expertise from 

endoscopists, often leading to poor patient compliance [23]. 

Considering CRC's high mortality rate and low early detection 

rates, identifying sensitive early diagnostic markers and 

reliable prognostic indicators is an urgent need. 

 

Serum carcinoembryonic antigen (CEA) is widely used due to 

its simplicity, rapidity, and minimally invasive nature. 

However, its sensitivity and specificity are suboptimal [24,25]. 

Most researchers agree that a single tumor marker cannot 

meet clinical requirements, and combined testing strategies 

are essential to improve diagnostic accuracy [26-28]. In our 

study, Weighted Gene Co-expression Network Analysis 

(WGCNA) was used to identify hub genes associated with 

CRC. 

 

Key Findings from Hub Gene Analysis 

 

Our nomogram model exhibited strong predictive 

performance for CRC. The ROC curves for five hub 
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genes—CDC2 (CDK1), CCNB1, CCNA2, TOP2A, and 

CCNB2—demonstrated their diagnostic effectiveness, with 

high area under the curve (AUC) values, effectively 

distinguishing CRC cases from controls (Figure 3-C). 

 

Protein-protein interaction (PPI) network analysis 

underscored the critical roles of these hub genes in CRC 

pathogenesis. CDC2, also known as CDK1, is a 

cyclin-dependent kinase pivotal in cell cycle regulation. 

Abnormal CDC2 activity contributes to unregulated 

proliferation, a hallmark of cancer. Clinical applications of 

CDK1 inhibitors have shown promise in disrupting cancer 

cell cycles [29-31]. CCNA2, encoding cyclin A, and 

CCNB1/CCNB2, encoding cyclin B, form active complexes 

with CDC2, orchestrating DNA replication and mitosis during 

the cell cycle. Overexpression of these cyclins correlates with 

heightened malignancy, metastasis, and poor prognosis in 

CRC [32-35]. 

 

TOP2A, encoding DNA topoisomerase IIα, is critical for 

DNA replication and repair. Its overexpression disrupts 

genomic stability and is associated with increased CRC 

malignancy and drug sensitivity to topoisomerase inhibitors 

[36]. 

 

Pathway Enrichment Analysis 

 

Gene Ontology (GO) analysis revealed enrichment in 

ribosomal biogenesis and RNA metabolic processes, 

suggesting that ribosomal RNA abnormalities contribute to 

CRC pathogenesis. Kyoto Encyclopedia of Genes and 

Genomes (KEGG) analysis highlighted significant 

enrichment in cell cycle and DNA replication pathways. 

These pathways regulate cell growth, DNA synthesis, and 

mitosis, which are frequently dysregulated in CRC [37-41]. 

 

Abnormal activation of pathways like Wnt, p53, and 

RAS-RAF-MEK-ERK further contributes to genomic 

instability and uncontrolled proliferation in CRC. Our results 

emphasize the cell cycle and DNA replication pathways' 

critical roles in CRC initiation, progression, and metastasis. 

 

Novel Insights from Mendelian Randomization Analysis 

 

Using Cytoscape software, CDC2 emerged as the most 

significant hub gene in the PPI network. This is the first study 

employing two-sample Mendelian randomization (MR) to 

explore the causal relationship between CDC2 levels and 

CRC risk using genome-wide association study (GWAS) data. 

Our MR analysis revealed a potential causal link between 

serum CDC2 levels and increased CRC risk. Rigorous 

controls for confounders and SNP-related biases, coupled 

with MR-Egger regression testing, ensured robust findings. 

 

CeRNA Network Analysis 

 

In CRC, competitive endogenous RNA (ceRNA) networks 

play a pivotal role in tumor progression. Certain long 

non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) 

regulate each other's expression by competitively binding to 

microRNAs (miRNAs). Our ceRNA network analysis 

identified 168 nodes and 175 edges, underscoring the hub 

genes' strong associations with CRC. 

Focusing on miRNAs related to CDC2, 22 key candidates 

were identified, including hsa-miR-590-3p, hsa-miR-182-5p, 

and hsa-miR-802, which are implicated in CRC cell 

proliferation, invasion, and apoptosis [42-50]. Further 

investigation into these miRNAs may uncover new 

biomarkers and therapeutic targets. 

 

Limitations and Future Directions 

 

While our study provides meaningful insights, limitations 

exist. First, only one dataset was used due to limited 

microarray data in the CRC field, restricting generalizability. 

Second, our findings rely on bioinformatics analyses, 

necessitating further experimental validation of core gene 

mechanisms. Prospective studies integrating larger datasets 

and experimental approaches will strengthen these findings. 

 

In summary, our study identifies critical hub genes and 

molecular pathways involved in CRC, providing valuable 

insights into potential diagnostic and therapeutic strategies. 

Further validation of these targets could significantly advance 

CRC management and patient outcomes. 

 

7. Conclusion 
 

This study identified key genes associated with colorectal 

cancer (CRC) through differential expression analysis and 

weighted gene co-expression network analysis (WGCNA), 

highlighting their potential applications in CRC diagnosis and 

prognosis. By constructing a gene co-expression network, we 

pinpointed 963 key genes. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

analyses demonstrated the involvement of these genes in 

critical biological processes such as ribonucleoprotein 

complex biogenesis, rRNA metabolism, the cell cycle, and 

DNA replication. Specifically, five highly expressed 

genes—CDC2, CCNB1, CCNA2, TOP2A, and 

CCNB2—were identified through Cytoscape analysis as 

potentially pivotal in CRC development and progression. 

 

Additionally, a nomogram model was constructed to predict 

CRC risk, with its diagnostic efficacy validated through 

receiver operating characteristic (ROC) curves, 

demonstrating high accuracy. Among the identified genes, 

CDC2 emerged as a crucial factor associated with immune 

cell infiltration. Using Mendelian randomization studies, we 

established a causal relationship between CDC2 expression 

and immune cell infiltration in CRC, revealing that elevated 

CDC2 levels significantly increase the risk of CRC-related 

immune dysfunction. These findings provide novel insights 

and theoretical support for the early diagnosis of CRC and its 

immunotherapy strategies. 

 

In conclusion, this study proposes new biomarkers and 

molecular targets for the early detection and treatment of CRC, 

with a particular focus on CDC2. The results underscore its 

significant role in CRC immune infiltration and pathological 

progression, offering a theoretical basis for personalized 

treatment approaches and prognosis evaluation in CRC 

management. 
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